They move in a waves motion
Answer:

Explanation:
We first identify the elements of this simple harmonic motion:
The amplitude A is 8.8cm, because it's the maximum distance the mass can go away from the equilibrium point. In meters, it is equivalent to 0.088m.
The angular frequency ω can be calculated with the formula:

Where k is the spring constant and m is the mass of the particle.
Now, since the spring starts stretched at its maximum, the appropriate function to use is the positive cosine in the equation of simple harmonic motion:

Finally, the equation of the motion of the system is:
or

It would have to be 36,719 Km high in order to be to be in geosynchronous orbit.
To find the answer, we need to know about the third law of Kepler.
<h3>What's the Kepler's third law?</h3>
- It states that the square of the time period of orbiting planet or satellite is directly proportional to the cube of the radius of the orbit.
- Mathematically, T²∝a³
<h3>What's the radius of geosynchronous orbit, if the time period and altitude of ISS are 90 minutes and 409 km respectively?</h3>
- The time period of geosynchronous orbit is 24 hours or 1440 minutes.
- As the Earth's radius is 6371 Km, so radius of the ISS orbit= 6371km + 409 km = 6780km.
- If T1 and T2 are time period of geosynchronous orbit and ISS orbit respectively, a1 and a2 are radius of geosynchronous orbit and ISS orbit, as per third law of Kepler, (T1/T2)² = (a1/a2)³
- a1= (T1/T2)⅔×a2
= (1440/90)⅔×6780
= 43,090 km
- Altitude of geosynchronous orbit = 43,090 - 6371= 36,719 km
Thus, we can conclude that the altitude of geosynchronous orbit is 36,719km.
Learn more about the Kepler's third law here:
brainly.com/question/16705471
#SPJ4
The best answer is D.
Stress is a force that acts on rock to change its shape or volume. Because stress is a force, it adds energy to the rock, which is stored in the rock until either the rock breaks or changes shape.
There are three kinds of stress, namely shearing, tension and compression.
Shearing- force that pushes a mass of rock in two opposite directions and can cause rock to break and slip apart or change shape.
Tension - force that pulls on the crust, stretching rock so that it becomes thinner in the middle.
Compression - force that squeezes rock until it folds or breaks