Answer:
If there is 0.66 moles of iron(III)oxide produced, there reacte 0.99 moles of oxygen (O2)
Explanation:
Step 1: Data given
Number of moles iron (III) oxide (Fe2O3) = 0.66 moles
Step 2: The balanced equation
4Fe + 3O2 → 2Fe2O3
Step 3: Calculate moles of oxygen (O2)
For 4 moles Fe consumed, we need 3 moles of O2 to produce 2 moles of Fe2O3
For 0.66 moles Fe2O3 produced, we need 3/2 * 0.66 = 0.99 moles of O2
If there is 0.66 moles of iron(III)oxide produced, there reacte 0.99 moles of oxygen (O2)
Answer:
The van't hoff factor of 0.500m K₂SO₄ will be highest.
Explanation:
Van't Hoff factor was introduced for better understanding of colligative property of a solution.
By definition it is the ratio of actual number of particles or ions or associated molecules formed when a solute is dissolved to the number of particles expected from the mass dissolved.
a) For NaCl the van't Hoff factor is 2
b) For K₂SO₄ the van't Hoff factor is 3 [it will dissociate to give three ions one sulfate ion and two potassium ions]
Out of 0.500m and 0.050m K₂SO₄, the van't hoff factor of 0.500m K₂SO₄ will be more.
c) The van't Hoff factor for glucose is one as it is a non electrolyte and will not dissociate.
Lithium's atomic weight is 6.94 g/mol.

Need anything else?
Answer: D)The distance from Earth and mass of ISS exert negligible gravitational force on the astronaut.
Explanation:
The distance from Earth and mass of ISS exert negligible gravitational force on the astronaut. Gravity is a very weak force and varies with mass and the inverse square of distance. The astronaut's distance from Earth and the relative small mass of ISS result in gravitational force near zero.
Test tubes, flasks, bunsen burners, random chemical equations