Answer:
[H2]eq = 0.0129 M
[F2]eq = 1.0129 M
[HF]eq = 0.9871 M
Explanation:
∴ Ke = [HF]² / [H2]*[F2] = 1.15 E2
experiment:
∴ n H2 = 3.00 mol
∴ n F2 = 6.00 mol
∴ V sln = 3.00 L
⇒ [H2]i = 3.00 mol / 3.00 L = 1 M
⇒ [F2]i = 6.00 mol / 3.00 L = 2 M
[ ]i change [ ]eq
H2 1 1 - x 1 - x
F2 2 2 - x 2 - x
HF - x x
⇒ K = (x)² / (1 - x)*(2 - x) = 1.15 E2
⇒ x² / (2 - 3x + x²) = 1.15 E2 = 115
⇒ x² = (2 - 3x + x²)(115)
⇒ x² = 230 - 345x + 115x²
⇒ 0 = 230 - 345x + 114x²
⇒ x = 0.9871
equilibrium:
⇒ [H2] = 1 - x = 1 - 0.9871 = 0.0129 M
⇒ [F2] = 2 - x = 2 - 0.9871 = 1.0129 M
⇒ [HF] = x = 0.9871 M
Answer:
1. Define the problem
2. Conduct a literature search
3. Propose a hypothesis
4. Devise an experiment to prove or disprove
5. State conclusions
Explanation: In order to begin an experiment, you must first define a problem or question that you will be answering. Then you must research the problem in order to form a hypothesis, or an educated guess. Then you should devise and execute an experiment to answer your question. The conclusions that you draw will either prove or disprove your hypothesis. Hope this helps!
boyles law states that the volumes of a gas will decrease as pressure increases if the temperature remains constant.
charles law states that the volume of a gas will increase as temp increases if the pressure remains constant.
gay-lussacs law states that the pressure increases as temp increases if the volume remains constant.