I think the correct answers are X2Y and X3Y, X2Y5 and X3Y5, and X4Y2 and X3Y,
for the following reason:
If you look at the combining masses of X and Y in
each of the two compounds,
The first compound contains 0.25g of X combined with
0.75g of Y
so the ratio (by mass) of X to Y = 1 : 3
The second compound contains 0.33 g of X combined with
0.67 g of Y
so the ratio (by mass) of X to Y = 1 : 2
Now, you suppose to prepare each of these two
compounds, starting with the same fixed mass of element Y ( I will choose 12g
of Y for an easy calculation!)
The first compound will then contain 4g of X and 12g
of Y
The second compound will then contain 6g of X and
12g of Y
<span>The ratio which combined
the masses of X and the fixed mass (12g) of Y
= 4 : 6
<span>or 2 : 3 </span>
So, the ratio of MOLES of X which combined with the
fixed amount of Y in the two compounds is also = 2 : 3 </span>
The two compounds given with the plausible formula must therefore contain
the same ratio.
Answer:
I think the teaspoon will cool down faster.
Explanation:
The teaspoon of water will cool down faster because it is a smaller amount of water so the entire [drop] will absorb heat energy faster.
Answer:
Blue, orange and green
Explanation:
Three different colors are observed from compounds containing different oxidation states of chromium: +2 (blue), +3 (green), and +6 (orange).
Answer:
Rate = 116m⁻¹s⁻¹[lactose][H]⁺
Explanation:
the formula for rate of reaction is given as
Rate = k[lactose]∧α[H]⁺∧β
we solve for the value of α and β
([lactose]₁/[lactose]₂)∧α
α = 
when we divide this equation
α = 
α = 1
we find β
R₁/R₂ = 0.01/0.02(0.001/0.001)∧β
0.00116/0.00232 = 0.5(1)∧β
β = 1
Rate = k[lactose]∧α[H]⁺∧β
we have to find the value for k
k = 0.00116/0.01(0.001)
k = 0.00116/0.00001
= 116m⁻¹s⁻¹
<u>Rate = 116m⁻¹s⁻¹[lactose][H]⁺</u>