1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ankoles [38]
3 years ago
14

URGENT!! An astronaut on the International Space Station is doing a spacewalk to fix a solar panel that has malfunctioned. While

he is completing his task, a piece of space junk flies past and cuts the line that has him tethered to the space station. He begins to float away and must think quickly in order to get himself back to safety. All the astronaut has with him on his suit are some small tools and a can of compressed air.
What would be the most effective way for the astronaut to get himself back to safety?
A. use a swimming motion to move himself back to the space station
b. toss his tools in the direction of the space station
c. shoot gas from his compressed air canister towards the space station
d. shoot gas from his compressed air canister away from the space station
Physics
2 answers:
Eddi Din [679]3 years ago
5 0

Answer:

D. Shoot gas from his compressed air canister away from the space station

Explanation:

Isacc Newton's 3rd law states "For every action, there is an equal and opposite reaction." The statement means that in every interaction, there is a pair of forces acting on the two interacting objects. The size of the forces on the first object equals the size of the force on the second object.

aleksley [76]3 years ago
3 0

C because the air will push him closer to the space station

You might be interested in
For this discussion, you will work in groups to answer the questions. In a video game, airplanes move from left to right along t
Mariulka [41]

Answer:

When fired from (1,3) the rocket will hit the target at (4,0)

When fired from (2, 2.5) the rocket will hit the target at (12,0)

When fired from (2.5, 2.4) the rocket will hit the target at (\frac{35}{2},0)

When fired from (4,2.25) the rocket will hit the target at (40,0)

Explanation:

All of the parts of the problem are solved in the same way, so let's start with the first point (1,3).

Let's assume that the rocket's trajectory will be a straight line, so what we need to do here is to find the equation of the line tangent to the trajectory of the airplane and then find the x-intercept of such a line.

In order to find the line tangent to the graph of the trajectory of the airplane, we need to start by finding the derivative of such a function:

y=2+\frac{1}{x}

y=2+x^{-1}

y'=-x^{-2}

y'=-\frac{1}{x^{2}}

so, we can substitute the x-value of the given point into the derivative, in this case x=1, so:

y'=-\frac{1}{x^{2}}

y'=-\frac{1}{(1)^{2}}

m=y'=-1

so we can now use this slope and the point-slope form of the line to find the equation of the line tangent to the trajectory of the airplane so we get:

y-y_{1}=m(x-x_{1})

y-3=-1(x-1})

y-3=-1x+1

y=-x+1+3

y=-x+4

So we can now set y=0 so find the x-coordinate where the rocket hits the x-axis.

-x+4=0

and solve for x

x=4

so, when fired from (1,3) the rocket will hit the target at (4,0)

Now, let's calculate the coordinates where the rocket will hit the target if fired from (2, 2.5)

so, we can substitute the x-value of the given point into the derivative, in this case x=2, so:

y'=-\frac{1}{x^{2}}

y'=-\frac{1}{(2)^{2}}

m=y'=-\frac{1}{4}

so we can now use this slope and the point-slope form of the line to find the equation of the line tangent to the trajectory of the airplane so we get:

y-y_{1}=m(x-x_{1})

y-2.5=-\frac{1}{4}(x-2})

y-2.5=-\frac{1}{4}x+\frac{1}{2}

y=-\frac{1}{4}x+\frac{1}{2}+\frac{5}{2}

y=-\frac{1}{4}x+3

So we can now set y=0 so find the x-coordinate where the rocket hits the x-axis.

-\frac{1}{4}x+3=0

and solve for x

x=12

so, when fired from (2, 2.5) the rocket will hit the target at (12,0)

Now, let's calculate the coordinates where the rocket will hit the target if fired from (2.5, 2.4)

so, we can substitute the x-value of the given point into the derivative, in this case x=2.5, so:

y'=-\frac{1}{x^{2}}

y'=-\frac{1}{(2.5)^{2}}

m=y'=-\frac{4}{25}

so we can now use this slope and the point-slope form of the line to find the equation of the line tangent to the trajectory of the airplane so we get:

y-y_{1}=m(x-x_{1})

y-2.4=-\frac{4}{25}(x-2.5})

y-2.4=-\frac{4}{25}x+\frac{2}{5}

y=-\frac{4}{25}x+\frac{2}{5}+2.4

y=-\frac{4}{25}x+\frac{14}{5}

So we can now set y=0 so find the x-coordinate where the rocket hits the x-axis.

-\frac{4}{25}x+\frac{14}{5}=0

and solve for x

x=\frac{35}{20}

so, when fired from (2.5, 2.4) the rocket will hit the target at (\frac{35}{2},0)

Now, let's calculate the coordinates where the rocket will hit the target if fired from (4, 2.25)

so, we can substitute the x-value of the given point into the derivative, in this case x=4, so:

y'=-\frac{1}{x^{2}}

y'=-\frac{1}{(4)^{2}}

m=y'=-\frac{1}{16}

so we can now use this slope and the point-slope form of the line to find the equation of the line tangent to the trajectory of the airplane so we get:

y-y_{1}=m(x-x_{1})

y-2.25=-\frac{1}{16}(x-4})

y-2.25=-\frac{1}{16}x+\frac{1}{4}

y=-\frac{1}{16}x+\frac{1}{4}+2.25

y=-\frac{1}{16}x+\frac{5}{2}

So we can now set y=0 so find the x-coordinate where the rocket hits the x-axis.

-\frac{1}{16}x+\frac{5}{2}=0

and solve for x

x=40

so, when fired from (4,2.25) the rocket will hit the target at (40,0)

I uploaded a graph that represents each case.

8 0
3 years ago
A car changes velocity at a constant acceleration of 2.5m/s to reach 43.7m/s in 2.7 s how fast was the car moving when it began
Montano1993 [528]

The formula we can use in this case is:

v = v0 + a t

where v is final velocity, v0 is initial velocity, a is acceleration and t is time

So finding for v0:

v0 = v – a t

v0 = 43.7 – (2.5) 2.7

v0 =  36.95 m/s

8 0
3 years ago
The density of lead is 30.2g/cm^3.what is the value in kilograms per meter cube?
V125BC [204]
Answer:
11300 kgm3

Hope this helps
3 0
2 years ago
Which of the following models shows how unpredictable electrons are?
Fantom [35]

D

The exact location of electrons in electron shells of atoms cannot be exactly ascertained. This is why VSPER atomic models represent the position of electrons (s, p, d, & f) using the probability of where they would most be expected to be found.

Explanation:

This is because merely observing electrons changes their behavior. Remember that to observe something one has to shine light on it so it bounces back to the eye. Due to the negligible mass of electrons, mere photons of light will change their direction of movement, spin or other behaviors/properties.

Learn More:

For more on electron clouds check out;

brainly.com/question/12199882

brainly.com/question/11686000

#LearnWithBrainly

7 0
3 years ago
Read 2 more answers
A student is trying to determine the acceleration of a feather as she drops it to the ground. if the student is looking to achie
Anna [14]

The coordinate system should have the origin at the point where the feather is dropped and the downward direction is to be taken as positive.

All falling bodies experience acceleration towards the center of the Earth due to the force of gravitational attraction exerted on the object by the Earth. A feather, when dropped experiences an acceleration in the downward direction. Since the acceleration of the feather is in the downward direction, a feather, when dropped with zero initial velocity, has its velocity vector directed in the direction of its acceleration.

If the downward direction is taken as positive, the falling feather can be said to have a positive velocity and a positive acceleration.

5 0
3 years ago
Other questions:
  • Temperature is a measure of the average ____________ energy of an object's particles. light mechanical potential kinetic
    7·2 answers
  • You may remember getting toys for Christmas or your birthdays that your parents had to assemble. One such toy requires the use o
    8·1 answer
  • A particle moves along the x axis. Its position is given by the equation
    13·1 answer
  • Need help ASAP please and thank you
    13·1 answer
  • A metal has a work function of 4.50 eV. Find the maximum kinetic energy of the photoelectrons if light of wavelength 250 nm shin
    9·1 answer
  • Which of the following is NOT a level of home monitoring?
    9·1 answer
  • Pls I need it fast , its for my homework and I can’t find it
    6·1 answer
  • You need eye drops for your dry eyes. You brought only a few dollars with you to the store. Which is the best method of choosing
    5·1 answer
  • The qualitative equivalent of external validity is:
    5·1 answer
  • The loss of static electricity as electric charges transfer from one object to another is called
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!