where is the question in this ????
Answer:
Electric potential energy at the negative terminal: 
Explanation:
When a particle with charge
travels across a potential difference
, then its change in electric potential energy is

In this problem, we know that:
The particle is an electron, so its charge is

We also know that the positive terminal is at potential

While the negative terminal is at potential

Therefore, the potential difference (final minus initial) is

So, the change in potential energy of the electron is

This means that the electron when it is at the negative terminal has
of energy more than when it is at the positive terminal.
Since the potential at the positive terminal is 0, this means that the electric potential energy of the electron at the negative end is

<span>Reduce energy use.
Change the way you think about transportation. Walk or bike whenever possible.
Insulate your home. Insulate yourself and your home.
Make every drop count.
</span>Cool wash and hang to dry.
<span>Switch to "green power.
</span>Recycle.
As the core collapses, the outer layers of the star are expelled. A planetary nebula is formed by the outer layers. The core remains as a white dwarf and eventually cools to become a black dwarf. ... Like low-mass stars, high-mass stars are born in nebulae and evolve and live in the Main Sequence
hydrogen shell burning - outer layers swell. Red Giant Branch - helium ash core compresses - increased hydrogen shell burning. First Dredge Up - expanding atmosphere cools star - stirs carbon, nitrogen and oxygen upward - star heats up.
Answer:
D)Not enough information
Explanation:
According to Pascal's principle, the pressure exerted on the two pistons is equal:

Pressure is given by the ratio between force F and area A, so we can write

The force exerted on each piston is just equal to the weight of the corresponding mass:
, where m is the mass and g is the gravitational acceleration. So the equation becomes

Now we can rewrite the mass as the product of volume, V, times density, d:

We also know that 
So we can further re-arrange the equation (and simplify g as well):


We are also told that block B has bigger volume than block A:
. However, this information is not enough to allow us to say if the fraction on the right is greater than 1 or smaller than 1: therefore, we cannot conclude anything about the densities of the two objects.