Assuming its at r. t.p and pressure
no. of moles = 96/24=4moles
altho some books will say that its 23.7dm3/mole but that doesnt really matter because its the process that matters
Answer:
A.
Explanation:
Using the ideal gas equation, we can calculate the number of moles present. I.e
PV = nRT
Since all the parameters are equal for both gases, we can simply deduce that both has the same number of moles of gases.
The relationship between the mass of each sample and the number of moles can be seen in the relation below :
mass in grammes = molar mass in g/mol × number of moles.
Now , we have established that both have the same number of moles. For them to have the same mass, they must have the same molar masses which is not possible.
Hence option A is wrong
<span>The answer is hypertonic. In osmosis, water
molecules move from a hypotonic solution to the hypertonic solution, through a
semipermeable membrane. This occurs until
both solutions become isotonic relative to each other. In osmosis, only
the movement of water molecules occurs since the ions are large enough to pass
through the pores of the semipermeable membrane,
in this case, the cell membrane. Due to
loss of water in the process of osmosis, the cells in the fingers of the swimmers
shrunk hence looked shriveled.</span>
<span>1 trial : you have nothing to compare the result with - you don't know if it's a mistake.
2 trials : you can compare results - if very different, one may have gone wrong, but which one?
3 trials : if 2 results are close and 3rd far away, 3rd probably unreliable and can be rejected.
******************************
First calculate the enthalpy of fusion. M, C and m,c = mass and
specific heat of calorimeter and water; n, L = mass and heat of fusion
of ice; T = temperature fall.
L = (mc+MC)T/n.
c=4.18 J/gK. I assume calorimeter was copper, so C=0.385 J/gK.
1. M = 409g, m = 45g. T = 22c, n = 14g
L = (45*4.18+409*0.385)*22/14 = 543.0 J/g.
2. M = 409g, m = 49g, T = 20c, n = 13g
L = (49*4.18+409*0.385)*20/13 = 557.4 J/g.
3. M = 409g, m = 54g, T = 20c, n = 14g
L = (54*4.18+409*0.385)*20/14 = 547.4 J/g.
(i) Estimate error in L from spread of 3 results.
Average L = 549.3 J/g.
average of squared differences (variance) = (6.236^2+8.095^2+1.859^2)/3 = 35.96
standard deviation = 5.9964
standard error = SD/(N-1) = 5.9964/2 = 3 J/g approx.
% error = 3/547 x 100% = 0.5%.
(ii) Estimate error in L from accuracy of measurements:
error in masses = +/-0.5g
error in T = +/-0.5c
For Trial 3
M = 409g, error = 0.5g
m = 463-409, error = sqrt(0.5^2+0.5^2) = 0.5*sqrt(2)
n =(516-463)-(448-409)=14, error = 0.5*sqrt(4) = 1.0g
K = (mc+MC)=383, error = sqrt[2*(0.5*4.18)^2+(0.5*0.385)^2] = 2.962
L = K*T/n
% errors are
K: 3/383 x 100% = 0.77
T: 0.5/20 x 100% = 2.5
n: 1.0/14 x 100% = 7.14
% errors in K and T are << error in n, so we can ignore them.
% error in L = same as in n = 7% x 547.4 = 40 (always round final error to 1 sig fig).
*************************************
The result is (i) L= 549 +/- 3 J/g or (ii) L = 550 +/- 40 J/g.
Both are very far above accepted figure of 334 J/g, so there is at least
one systematic error in the experiment or the calculations.
eg calorimeter may not be copper, so C is not 0.385 J/gK. (If it was
polystyrene, which absorbs/ transmits little heat, the effective value
of C would be very low, reducing L.)
Using +/- 40 is probably best (more cautious).
However, the spread in the actual results is much smaller; try to explain this discrepancy - eg
* measurements were "fiddled" to get better results; other Trials were made but only best 3 were chosen.
* measurements were more accurate than I assumed (eg masses to nearest 0.1g but rounded to 1g when written down).
Other sources of error:
L=(mc+MC)T/n is too high, so n (ice melted) may be too small, or T (temp fall) too high - why?
* it is suspicious that all final temperatures were 0c - was this
actually measured or just guessed? a higher final temp would reduce L.
* we have assumed initial and final temperature of ice was 0c, it may
actually have been colder, so less ice would melt - this could explain
small values of n
* some water might have been left in container when unmelted ice was
weighed (eg clinging to ice) - again this could explain small n;
* poor insulation - heat gained from surroundings, melting more ice,
increasing n - but this would reduce measured L below 334 J/g not
increase it.
* calorimeter still cold from last trial when next one started, not
given time to reach same temperature as water - this would reduce n.
Hope This Helps :)
</span>