Density = mass / volume
mass = 1.1 g
volume = length of side ^ 3 = [1.2 * 10^-5 km * 100000 cm/km]^3 = [1.2 cm]^3 = 1.728 cm^3
density = 1.1 g / 1.728 cm^3 = 0.64 g / cm^3
The wavelengths of the constituent travelling waves CANNOT be 400 cm.
The given parameters:
- <em>Length of the string, L = 100 cm</em>
<em />
The wavelengths of the constituent travelling waves is calculated as follows;

for first mode: n = 1

for second mode: n = 2

For the third mode: n = 3

For fourth mode: n = 4

Thus, we can conclude that, the wavelengths of the constituent travelling waves CANNOT be 400 cm.
The complete question is below:
A string of length 100 cm is held fixed at both ends and vibrates in a standing wave pattern. The wavelengths of the constituent travelling waves CANNOT be:
A. 400 cm
B. 200 cm
C. 100 cm
D. 67 cm
E. 50 cm
Learn more about wavelengths of travelling waves here: brainly.com/question/19249186
Answer:

Explanation:
Given data
length=100mm
Diameter=5mm
Thermal conductivity=5 W/m.K
Power=50 W
Temperature=25°C
The temperature of heater surface follows from the rate equation written as:

Where S can be estimated from the conduction shape factor for a vertical cylinder in semi infinite medium

Substitute the given values
![S=\frac{2\pi (0.1m)}{ln[\frac{4*0.1m}{0.005m} ]}\\ S=0.143m](https://tex.z-dn.net/?f=S%3D%5Cfrac%7B2%5Cpi%20%280.1m%29%7D%7Bln%5B%5Cfrac%7B4%2A0.1m%7D%7B0.005m%7D%20%5D%7D%5C%5C%20S%3D0.143m)
The temperature of heater is then:

The temperature reached by the heater when dissipating 50 W with the surface of the block at a temperature of 25°C.

Space telescopes must be placed in orbit around earth in order to observe short-wavelength radiation.
<h3>What is telescope?</h3>
A telescope is an optical instrument that uses lenses, curved mirrors, or a combination of both to watch distant objects.
When atoms in a gas reach this temperature, they travel so quickly that when they collide, they release X-ray photons with wavelengths smaller than 10 nanometers.
Because the Earth's atmosphere prevents all X-rays from space, these wavelengths must be seen using space telescopes.
To study short-wavelength radiation, space telescopes must be put in orbit around the Earth.
Hence, space telescope is the correct answer.
To learn more about the telescope, refer:
brainly.com/question/556195
#SPJ1