<h3>
Answer:</h3>
56.11 g/mol
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Compound] KOH
<u>Step 2: Identify</u>
[PT] Molar Mass of K - 39.10 g/mol
[PT] Molar Mass of O - 16.00 g/mol
[PT] Molar Mass of H - 1.01 g/mol
<u>Step 3: Find</u>
39.10 + 16.00 + 1.01 = 56.11 g/mol
Explanation:
To solve this problem, follow these steps;
- Obtain a balanced equation of the reaction and familiarize with the reactants and products.
- Find the number of moles of the reacting species since they are the known matter in terms of quantity.
- From the number of moles, determine the limiting reactant.
- The limiting reactant is the one given in short supply.
- Such reactant determines the extent of the reaction.
- Compare the moles of this specie to that of the products using the balanced equation.
- Obtain the mole of the desired product and find the mass or desired quantity.
- simply work from the known specie to the unknown
learn more:
Number of moles brainly.com/question/13064292
#learnwithBrainly
Answer:
Newton's First Law states that an object in motion will stay in motion, an object at rest will stay at rest, at a constant velocity, unless an unbalanced force acts upon it.
Newtons First law of motion has to do with seat belts because think about it, what happens when we don't wear a seat belt and our vehicle comes to a quick stop. What happens to you? You move forward and stay in motion until an unbalanced force acts upon you. Now what is an unbalanced force? An unbalanced force is one that is not opposed by an equal and opposite force operating directly against the force intended to cause a change in the object's state of motion or rest. So, when you come to a stop, you wouldn't stop motion unless a force is caused to change your motion and put you at rest. If you were wearing a seat belt, the seat belt would act as the unbalanced force, it would stop you from being in motion.
Answer:
36.8 L
Explanation:
We'll begin by converting 80 °C to Kelvin temperature. This can be obtained as follow:
T(K) = T(°C) + 273
T(°C) = 80 °C
T(K) = 80 + 273
T(K) = 353 K
Finally, we shall determine the volume occupied by the helium gas. This can be obtained as follow:
Number of mole (n) = 1.27 moles
Temperature (T) = 353 K
Pressure (P) = 1 atm
Gas constant (R) = 0.0821 atm.L/Kmol
Volume (V) =?
PV = nRT
1 × V = 1.27 × 0.0821 × 353
V = 36.8 L
Thus, the volume occupied by the helium gas is 36.8 L
In physics, a force is any interaction that, when unopposed, will change the motion of an object. A force can cause an object with mass to change its velocity to accelerate. Force can also be described intuitively as a push or a pull. A force has both magnitude and direction, making it a vector quantity.