Answer:
Explanation:
Given
same charge on both masses
potential Energy due to Magnetic Field =Kinetic Energy of Particle
and we know
Force due to magnetic field will Provide centripetal Force
and B is equal for both particles
thus
Answer: Velocity terminal = 0.093m/s
Explanation:
1. We start by evaluating the gap distance between the two cylinders as h = R(sleeve) - R(cylinder)
= (0.0604/2 - 0.06/2)m
= 2×10^-4
Surface are of the cylinder in the drop, which is required in order to evaluate the shearing stress can be expressed as A(cylinder) = π.d.L
= (π×0.06×0.4)m²
= 0.075m²
Since the force of the cylinder's weight is going to balance the shearing force on the walls, we can express the next equation and derive terminal velocity from it.
Shearing stress = u×V.terminal/h = 0.86×V/0.0002
= 4300Vterminal
Therefore, Fw = shearing stress × A
30N = 4300Vterminal × 0.075
V. terminal = 30/4300 m.s
V. terminal = 0.093m/s
Answer:
a) a = - 0.106 m/s^2 (←)
b) T = 12215.1064 N
Explanation:
If
F₁ = 9*1350 N = 12150 N (→)
F₂ = 9*1365 N = 12285 N (←)
∑Fx = M*a = (M₁ +M₂)*a (→)
F₁ - F₂ = (M₁ +M₂)*a
→ a = (F₁ - F₂) / (M₁ +M₂ ) = (12150-12285)N/(9*68+9*73)Kg
→ a = - 0.106 m/s^2 (←)
(b) What is the tension in the section of rope between the teams?
If we apply ∑Fx = M*a for the team 1
F₁ - T = - M₁*a ⇒ T = F₁ + M₁*a
⇒ T = 12150 N + (9 * 68 Kg)*(0.106 m/s^2)
⇒ T = 12215.1064 N
If we choose the team 2 we get
- F₂ + T = - M₂*a ⇒ T = F₂ - M₂*a
⇒ T = 12285 N - (9 * 73 Kg)*(0.106 m/s^2)
⇒ T = 12215.1064 N
Answer:
The time it will take for the car to reach a velocity of 28 m/s is 7 seconds
Explanation:
The parameters of the car are;
The acceleration of the car, a = 4 m/s²
The final velocity of the car, v = 28 m/s
The initial velocity of the car, u = 0 m/s (The car starts from rest)
The kinematic equation that can be used for finding (the time) how long it will take for the car to reach a velocity of 28 m/s is given as follows;
v = u + a·t
Where;
v = The final velocity of the car, v = 28 m/s
u = The initial velocity of the car = 0 m/s
a = The acceleration of the car = 4 m/s²
t = =The time it will take for the car to reach a velocity of 28 m/s
Therefore, we get;
t = (v - u)/a
t = (28 m/s - 0 m/s)/(4 m/s²) = 7 s
The time it will take for the car to reach a velocity of 28 m/s, t = 7 seconds.
Answer:
Explanation:
dU= dq+w
dU is change in internal energy of the system
dq is the amount heat added or released by the system which be positive or negative respectivelý
And w is the amount of work done by the system or on the system which will be positive or negative respectively.
Hence,
dU= 250+80= 330 J
The change will be positive