Answer: a) 139.4 μV; b) 129.6 μV
Explanation: In order to solve this problem we have to use the Ohm law given by:
V=R*I whre R= ρ *L/A where ρ;L and A are the resistivity, length and cross section of teh wire.
Then we have:
for cooper R=1.71 *10^-8* 1.8/(0.001628)^2= 11.61 * 10^-3Ω
and for silver R= 1.58 *10^-8* 1.8/(0.001628)^2=10.80 * 10^-3Ω
Finalle we calculate the potential difference (V) for both wires:
Vcooper=11.62* 10^-3* 12 * 10^-3=139.410^-6 V
V silver= 10.80 10^-3* 12 * 10^-3=129.6 10^-6 V
Answer:
the force exerted by the seat on the pilot is 10766.7 N
Explanation:
The computation of the force exerted by the seat on the pilot is as follows:

Hence, the force exerted by the seat on the pilot is 10766.7 N
Answer:
The object will travel at the speed of 16 m/s.
Explanation:
Given
To determine
How fast is the object traveling?
<u>Important Tip:</u>
The product of the mass and velocity of an object — momentum.
Using the formula

where
Thus, in order to determine the speed of the object, all we need to do is to substitute p = 64 and m = 4 in the formula


switch the equation

divide both sides by 4

simplify
m/s
Therefore, the object will travel at the speed of 16 m/s.
Answer:

So then the difference of temperature across the material would be 
Explanation:
For this case we can use the Fourier Law of heat conduction given by the following equation:
(1)
Where k = thermal conductivity = 0.2 W/ mK
A= 1m^2 represent the cross sectional area
Q= 3KW represent the rate of heat transfer
is the temperature of difference that we want to find
represent the thickness of the material
If we solve
in absolute value from the equation (1) we got:

First we convert 3KW to W and we got:

And we have everything to replace and we got:

So then the difference of temperature across the material would be 