Answer:
12.5mm
Explanation:
1cm = 10mm
so you need to multiply the 1.25 by 10 to get it in mm.
Covalent for the first one
48.2g SrF2
(hope this helps and correct me if I’m wrong)
Answer:
a) 381.2 g
b) 39916 g
c) 0.0013 lb mol
d) 29.6 g mol
Explanation:
The molecular weight (mw) of a compound is the mass of it per mole, so it's the ratio of the mass (m) per mole (n).
a) The molecular weight of one mol is found at the periodic table. So, for Mg, mw = 24.3 g/mol, for Cl = 35.5 g/mol, so for MgCl2, mw = 24.3 + 2*35.5 = 95.3 g/mol. The g mol is the mass divided by the molecular weight:
g mol = m/mw
4 = m/95.3
m = 381.2 g
b) The pound (lb) is a unity of mass, and the lb mol is a unity of the mass divided by the molecular weight. So, by the periodic table, the molecular weight of C3H8 is 3*12 (of C) + 8*1 (of H) = 44 lb/mol.
lb mol = m/mw
2 = m/44
m = 88 lb
1 lb = 453.592 g
So, m = 88*453.592 = 39916 g
c) The molecular weight of N2 is 2*14 (of N) = 28 lb/mol.
m = 16/453.592 = 0.0353 lb
lb mol = m/mw
lb mol = 0.0353/28
lb mol = 0.0013 lb mol
d) The molecular weight is 2*12 (of C) + 6*1(of H) + 1*16(of O) = 46 g/mol
3 lb = 1360.78 g
g mol = m/mw
g mol = 1360.78/46
g mol = 29.6 g mol
Answer:
The Periodic Table can be divided into s, d, p, and f sublevel blocks. For elements in the s sublevel block, all valence electrons are found in s orbitals. For elements in the p sublevel block, the highest energy valence electrons are found in p orbitals.
Explanation: