1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
erik [133]
3 years ago
15

2. A destructive, rotating column of air that has very high wind speeds and that is sometimes visible

Chemistry
2 answers:
lesya692 [45]3 years ago
5 0
It should be a tornado
shtirl [24]3 years ago
5 0

Answer:

Tornado

Explanation:

You might be interested in
15.1 L N2 at 25 °C and 125 kPa and 44.3 L O2 at 25 °C and 125 kPa were transferred to a tank with a volume of 6.25 L. What is th
Y_Kistochka [10]

Answer:

The total pressure of the mixture in the tank of volume 6.25 litres at 51°C  is 1291.85 kPa.

Explanation:

For N2,

                Pressure(P₁)=125 kPa

                  Volume(V₁)=15·1 L

                Temperature (T₁)=25°C=25+273 K=298 K

Similarly, for Oxygen,

                   Pressure(P₂)= 125 kPa

                   Volume(V₂)= 44.3 L

                  Temperature(T₂)=25°C= 298 K

Then, for the mixture,

              Volumeof the mixture( V)= 6.25 L

                                     Pressure(P)=?

                Temperature (T)= 51°C = 51+273 K=324 K

Then, By Combined gas laws,

                                 \frac{P_{1} V_{1} }{T_{1} } +\frac{P_{2} V_{2} }{T_{2} } =\frac{PV}{T}

                      or, \frac{15.1*125}{298} +\frac{44.3*125}{298} =\frac{P*6.25}{324}

                     or, 6.34+18.58=\frac{P*6.25}{324}

                     or, P=\frac{24.92*324}{6.25}

                        ∴P=1291.85 kPa

So the total pressure of the mixture in the tank of volume 6.25 litres at 51°C  is 1291.85 kPa.

3 0
3 years ago
Choose the nonmetallic elements from the list. Check all that apply yttrium: oxygen: boron: polonium: argon: gallium: carbon:
BaLLatris [955]

Answer:

B, E, & G

Oxygen, Argon, & Carbon

7 0
3 years ago
Read 2 more answers
Does adding 1 mol of NaCl to 1 kg of water lower the vapor pressure of water to the same extent, a lesser extent, or a greater e
igor_vitrenko [27]

Answer:

Adding 1 mol of NaCl to 1 kg of water lower the vapor pressure of water <em><u>to the same extent</u></em>  by adding 1 mol of C_06H_{12}O_6 to 1 kg of water.

Explanation:

1) Moles of NaCl ,n_1=1 mol

Mass of water = m= 1 kg = 1000 g

Moles of water = n_2=\frac{1000 g}{18 g/mol}=55.55 mol

Vapor pressure of the solution = p

Vapor pressure of the pure solvent that is water = p_o=17.5 Torr

Mole fraction of solute(NaCl)= \chi_1=\frac{n_1}{n_1+n_2}

\frac{p_o-p}{p_o}=\frac{n_1}{n_1+n_2}

\frac{17.5 Torr-p}{17.5 Torr}=\frac{1 mol}{1 mol+55.55 mol}

p=17.19 Torr

The vapor pressure for the NaCl solution at 17.19 Torr.

2) Moles of sucrose ,n_1=1mol

Mass of water = m  = 1 kg = 1000 g

Moles of water = n_2=\frac{1000 g}{18 g/mol}=55.55 mol

Vapor pressure of the solution = p'

Vapor pressure of the pure solvent that is water = p_o=17.5 Torr

Mole fraction of solute ( glucose)= \chi_1=\frac{n_1}{n_1+n_2}

\frac{p_o-p}{p_o}=\frac{n_1}{n_1+n_2}

\frac{17.5 Torr-p}{17.5 Torr}=\frac{1 mol}{1 mol+55.55 mol}

p'=17.19 Torr

The vapor pressure for the glucose solution at 17.19 Torr.

p = p' = 17.19 Torr

Adding 1 mol of NaCl to 1 kg of water lower the vapor pressure of water to the same extent  by adding 1 mol of C_06H_{12}O_6 to 1 kg of water.

3 0
3 years ago
What is the final temperature of the solution formed when 1.52 g of NaOH is added to 35.5 g of water at 20.1 °C in a calorimeter
Inessa [10]

Answer : The final temperature of the solution in the calorimeter is, 31.0^oC

Explanation :

First we have to calculate the heat produced.

\Delta H=\frac{q}{n}

where,

\Delta H = enthalpy change = -44.5 kJ/mol

q = heat released = ?

m = mass of NaOH = 1.52 g

Molar mass of NaOH = 40 g/mol

\text{Moles of }NaOH=\frac{\text{Mass of }NaOH}{\text{Molar mass of }NaOH}=\frac{1.52g}{40g/mole}=0.038mole

Now put all the given values in the above formula, we get:

44.5kJ/mol=\frac{q}{0.038mol}

q=1.691kJ

Now we have to calculate the final temperature of solution in the calorimeter.

q=m\times c\times (T_2-T_1)

where,

q = heat produced = 1.691 kJ = 1691 J

m = mass of solution = 1.52 + 35.5 = 37.02 g

c = specific heat capacity of water = 4.18J/g^oC

T_1 = initial temperature = 20.1^oC

T_2 = final temperature = ?

Now put all the given values in the above formula, we get:

1691J=37.02g\times 4.18J/g^oC\times (T_2-20.1)

T_2=31.0^oC

Thus, the final temperature of the solution in the calorimeter is, 31.0^oC

4 0
3 years ago
Determine which compound would raise the boiling point of water the most
umka2103 [35]
Because all the compounds are at the same concentration, the one that can produce more particles in solution will be the one that will raise the boiling point the most.

<span>A. 2.0 M (NH4)3PO4  will produce 4 particles per molecule formula</span>
8 0
3 years ago
Other questions:
  • What is latice energy
    9·1 answer
  • A solid is 5 cm tall 3 cm wide and 2 cm thick it has a mass of 129 g what is the density
    7·2 answers
  • Help? I missed 3 days of school ;-;
    9·2 answers
  • Plz help meh, I think there is trick question!!!
    6·2 answers
  • What happens to the atomic mass of an element moving from left to right within a period​
    9·1 answer
  • Mass_mole relationship
    8·1 answer
  • There are diffrent types of cells for every job in your body. How do we refer to those cells that develop differently?
    11·1 answer
  • We can also use the equation for enthalpy change for physical phase changes. Consider the phase change H2O(l) → H2O(g). Calculat
    15·2 answers
  • Which of the following best describes the location of element Tin?
    13·2 answers
  • The combustion of a fuel is generally favored because of the large increase in entropy due to
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!