Answer:
(a). The strength of the magnetic field is 0.1933 T.
(b). The magnetic flux through the loop is zero.
Explanation:
Given that,
Radius = 11.9 cm
Magnetic flux 
(a). We need to calculate the strength of the magnetic field
Using formula of magnetic flux





Put the value into the formula


(b). If the magnetic field is directed parallel to the plane of the loop,
We need to calculate the magnetic flux through the loop
Using formula of flux

Here, 


Hence, (a). The strength of the magnetic field is 0.1933 T.
(b). The magnetic flux through the loop is zero.
The simple harmonic motion not only describes circular movements, also describes waves motion. This makes it fundamental for physics, make us understand waves like sound or light which explains an enormus part of our environment
Answer
given,
initial velocity of skateboard = 5.1 m/s
angle above the horizontal = 55°
height of the ramp = 1 m
a) maximum height of projectile


H = 0.889 m
the maximum height of the skateboard above the ground
= 1 + 0.889
= 1.889 m
b) time to reach the height
t = 0.426 s
horizontal distance = u cos θ × t
= 5.1 × cos 55° × 0.426
horizontal distance = 1.25 m
Answer:
2274 J/kg ∙ K
Explanation:
The complete statement of the question is :
A lab assistant drops a 400.0-g piece of metal at 100.0°C into a 100.0-g aluminum cup containing 500.0 g of water at 15 °C. In a few minutes, she measures the final temperature of the system to be 40.0°C. What is the specific heat of the 400.0-g piece of metal, assuming that no significant heat is exchanged with the surroundings? The specific heat of this aluminum is 900.0 J/kg ∙ K and that of water is 4186 J/kg ∙ K.
= mass of metal = 400 g
= specific heat of metal = ?
= initial temperature of metal = 100 °C
= mass of aluminum cup = 100 g
= specific heat of aluminum cup = 900.0 J/kg ∙ K
= initial temperature of aluminum cup = 15 °C
= mass of water = 500 g
= specific heat of water = 4186 J/kg ∙ K
= initial temperature of water = 15 °C
= Final equilibrium temperature = 40 °C
Using conservation of energy
heat lost by metal = heat gained by aluminum cup + heat gained by water

Answer:
She covers the distance is 12 km.
The magnitude of displacement is 8.6 km.
The direction of her displacement is north east.
Explanation:
Given that,
Christina drives his moped 7 kilometers North and stop for lunch and then drive 5 km east.
We need to calculate the total distance
Using formula of distance

Put the value into the formula


We need to calculate the magnitude of displacement
Using formula of displacement




The direction of her displacement is north east.
Hence, She covers the distance is 12 km.
The magnitude of displacement is 8.6 km.
The direction of her displacement is north east.