Answer:
Q = 675 [J]
Explanation:
We can calculate the amount of heat transfer by means of the following expression that includes the mass and temperature change in a body as a function of the specific heat.

where:
m = mass = 25 [gr]
Cp = specific heat = 0.9 [J/g*°C]
Tinitial = 55 [°C]
Tfinal = 25 [°C]
![Q=25*0.9*(55-25)\\Q=675 [J]](https://tex.z-dn.net/?f=Q%3D25%2A0.9%2A%2855-25%29%5C%5CQ%3D675%20%5BJ%5D)
Answer:
a) V = 45 10³ V, b) U = 4.59 J
Explanation:
a) The electric potential for a series of point charges is
V = k ∑
in this case point P is at a distance of 1 m from each charge, so the point is located perpendicular to the charges at its midpoint
V = k (
)
V = 9 10⁹ (10 - 5/ 1) 10⁻⁶
V = 45 10³ V
b) the potential energy is
U = k (
)
where r = 1m and r₂ is the distance between the two charges r₂ = 0.10 m
U = 9 10⁹ (10 2 / 1 - 5 2/1 - 10 5 /0.10) 10⁻¹²
U = 9 10⁻³ 510
U = 4.59 J
As long as it’s a good mirror then any one of them is fine bc at the end of the day i’m getting a hot dog
Answer:
A )
Explanation:
This change in frequency observation occur due to doppler effect
if the wave source moves,In the time between one wave peak being emitted and the next, the source will have moved so that the shells will no longer be concentric. The wavefronts will get closer together in front of the source as it travels and will be further apart behind it. (see the graph)
when the person standing still in front of the ambulance, he will observe a <em>higher frequency </em>than before as the source travels towards them.

The pitch we hear depends on the frequency of the sound wave.
A high frequency corresponds to a high pitch
as we hear a higher frequency , it makes the <em>pitch higher</em> too