Answer:
On real life example of a scenario that takes advantage of the inverse relationship between force and time when impulse is constant is when making a serve with a lawn tennis racket
How It is an example of impulse is that when a serve is made by moving the bat slowly, the lawn tennis player uses less force and the ball is in contact with the string for longer a period
When however, the lawn tennis player moves the racket faster, with the strings of the racket highly tensioned he uses more force and the ball also spends less time on the racket to produce the same momentum
Explanation:
The impulse of a force, ΔP is given by the following formula;
ΔP = F × Δt
Where ΔP is constant, we have;
F ∝ 1/Δt
Therefore, for the same impulse, when the force is increased, the time of contact is decreases and vice versa.
Voltage - V = IR : v= voltage i= current r= resistance
Answer: 37.5 g
Explanation: you multiply 0.0375 by 1000 which equals 37.5
Answer:
A) 1.67 x 10 ⁻⁶ m/s
B)5.59 x
%
Explanation:
A)
Given:
d = 5.0 km,
mₐ = 2.5 x
kg
u₁ = 4.0 x 10⁴ m/s
= 5.98 x 10 ²⁴ kg
Solve using kinetic conserved energy
mₐ x u₁ +
x u₂ = uₓ x (mₐ +
)
(2.5 x
) (4.0 x 10⁴ )+ (5.98 x 10 ²⁴ )(0) = uₓ x (2.5 x
+ 5.98 x 10 ²⁴ )
uₓ = ( 2.5 x
x 4.0 x 10⁴ ) / (2.5 x
+ 5.98 x 10 ²⁴ )
uₓ = 1.67 x 10 ⁻⁶ m/s
B) Assuming earth radius as a R = 1.5 x 10 ¹¹ m
t = 365 days x 24 hr / 1 day x 60 minute / 1 hr x 60s / 1 minute = 31536000 s
t = 31536000 s
D = 2 π R = 2 π( 1.5 x 10 ¹¹ )
D = 9.4247 x 10 ¹¹ m
u₂ = D / t = 9.4247 x 10 ¹¹ / 31536000
u₂ = 29885.775 m/s
% = ( 1.67 x 10 ⁻⁶ m/s ) / (29885.775 m/s) x 100
% = 5.59 x
%