A metalloid is a type of chemical element which has a preponderance of properties in between, or that are a mixture of, those of metals and nonmetals.
1) Use the fact that 1 mol of gas at STP occupies 22.4 liter
=> 1 mol / 22.4 l = x / 0.125 l => x = 0.125 l * 1 mol / 22.4 l = 0.00558 mol
2) Now use the molar mass of the gas
molar mass of CO2 ≈ 44 g / mol
Formula: molar mass = mass in grams / number of moles =>
mass in grams = molar mass * number of moles = 44 g/mol * 0.00558 moles
mass = 0.246 g
Answer: 0.246 g
Answer:
The play will be more appealing to a younger audience.
Explanation:
A younger audience will more likely appreciate current pop hits rather than classical score.
The component of the dri reflects the requirement of a nutrient for 50 percent of healthy americans and canadians in a specific life stage and gender is Estimated Average Requirement (EAR).
What is EAR?
A daily food intake number known as the Estimated Average Requirement (EAR) is one that is thought to satisfy the needs of 50% of healthy persons in a given life stage and gender group.
Based on a review of the scientific literature, the estimated average requirements (EAR) are predicted to meet the needs of 50% of the population in that age range.
It serves as the foundation for the creation of RDAs and is employed to assess the sufficiency of nutritional consumption for a given population.
To learn more about EAR click the given link
brainly.com/question/14449512
#SPJ4
Answer:
V₂ ≈416.7 mL
Explanation:
This question asks us to find the volume, given another volume and 2 temperatures in Kelvin. Based on this information, we must be using Charles's Law and the formula. Remember, his law states the volume of a gas is proportional to the temperature.
where V₁ and V₂ are the first and second volumes, and T₁ and T₂ are the first and second temperature.
The balloon has a volume of 600 milliliters and a temperature of 360 K, but the temperature then drops to 250 K. So,
- V₁= 600 mL
- T₁= 360 K
- T₂= 250 K
Substitute the values into the formula.
- 600 mL /360 K = V₂ / 250 K
Since we are solving for the second volume when the temperature is 250 K, we have to isolate the variable V₂. It is being divided by 250 K. The inverse o division is multiplication, so we multiply both sides by 250 K.
- 250 K * 600 mL /360 K = V₂ / 250 K * 250 K
- 250 K * 600 mL/360 K = V₂
The units of Kelvin cancel, so we are left with the units of mL.
- 250 * 600 mL/360=V₂
- 416.666666667 mL= V₂
Let's round to the nearest tenth. The 6 in the hundredth place tells us to round to 6 to a 7.
The volume of the balloon at 250 K is approximately 416.7 milliliters.