Speed of light
According to Einstein, the speed of light is constant in all points of reference. In addition, he pointed out the speed of light is the maximum speed known since in practice one can never catch up with the beam of light. This is explained by his theory of relativity.
Answer:
t = 0.657 s
Explanation:
First, let's use the appropiate equations to solve this:
V = √T/u
This expression gives us a relation between speed of a disturbance and the properties of the material, in this case, the rope.
Where:
V: Speed of the disturbance
T: Tension of the rope
u: linear density of the rope.
The density of the rope can be calculated using the following expression:
u = M/L
Where:
M: mass of the rope
L: Length of the rope.
We already have the mass and length, which is the distance of the rope with the supports. Replacing the data we have:
u = 2.31 / 10.4 = 0.222 kg/m
Now, replacing in the first equation:
V = √55.7/0.222 = √250.9
V = 15.84 m/s
Finally the time can be calculated with the following expression:
V = L/t ----> t = L/V
Replacing:
t = 10.4 / 15.84
t = 0.657 s
Yes that's a true statement. That's why grandmother put a hot water bottle to warm up her bed, and not a hot bar of steel or lead.
The intensity of the light has no connection with the photoelectric effect.
That's what was so baffling about it before the particle nature of light
was suspected ... a match with a blue flame might stimulate the
photoelectric effect, but a high-power red searchlight couldn't do it.
Pressure is the amount of force per unit area. In formula it
is,
P = F ÷ A
P = 7000 N ÷ 0.4 m2
P = 17,500 N/m2
The amount of pressure the truck exerts on the piston is
17,500 N/m2