Answer:
The strength of the source charge's electric field could be measured by any other charge placed somewhere in its surroundings. The charge that is used to measure the electric field strength is referred to as a test charge since it is used to test the field strength. The test charge has a quantity of charge denoted by the symbol q.
Explanation:
Electric field strength is a vector quantity; it has both magnitude and direction. The magnitude of the electric field strength is defined in terms of how it is measured. Let's suppose that an electric charge can be denoted by the symbol Q. This electric charge creates an electric field; since Q is the source of the electric field, we will refer to it as the source charge. The strength of the source charge's electric field could be measured by any other charge placed somewhere in its surroundings. The charge that is used to measure the electric field strength is referred to as a test charge since it is used to test the field strength. The test charge has a quantity of charge denoted by the symbol q. When placed within the electric field, the test charge will experience an electric force - either attractive or repulsive. As is usually the case, this force will be denoted by the symbol F. The magnitude of the electric field is simply defined as the force per charge on the test charge.
Because they are larger planets the gravitational pull is heavier and they attract more celestial bodies
Answer:
The warmth you feel is the heat generated by the force of friction created by the rough surfaces of your hands rubbing together. As the abrasives in your eraser are rubbed against paper, friction produces heat, which helps the rubber become sticky enough to hold onto the graphite particles.
Explanation:
I hope this helps and pls mark me brainliest :)
We can assume the process to be adiabatic such that we can make use of the formula:
W = R (T2 - T1) / (γ - 1)
W = 8.314 (297 - 17) / (1.4 - 1)
W = 700 J/mole
multiplying the number of moles
W = 700 (0.43)
W = 301 J
The work done is 301 J.
I'll assume you are looking for the mass of the object, since that is the missing piece of the puzzle.
The important equation for heat and energy is
Energy = mass × specific heat × change in temperature
Things we know:
Energy needed is 350 J.
Specific heat = 1.2 J/g°C
Temp. change = (30-20)°
Now we just need to plug those in and rearrange the formula to find the mass!
350 = mass × 1.2 × 10