Answer:
a) The shear stress is 0.012
b) The shear stress is 0.0082
c) The total friction drag is 0.329 lbf
Explanation:
Given by the problem:
Length y plate = 2 ft
Width y plate = 10 ft
p = density = 1.938 slug/ft³
v = kinematic viscosity = 1.217x10⁻⁵ft²/s
Absolute viscosity = 2.359x10⁻⁵lbfs/ft²
a) The Reynold number is equal to:

The boundary layer thickness is equal to:
ft
The shear stress is equal to:

b) If the railing edge is 2 ft, the Reynold number is:

The boundary layer is equal to:

The sear stress is equal to:

c) The drag coefficient is equal to:

The friction drag is equal to:

Answer:
The force will be 
Explanation:
Let's use the centripetal force equation.

Where:
m is the mass of the bunch of bananas
ω is the angular speed
R is the radius
Now, 1 rev every 4 seconds or 0.25 rev/sec is the angular speed, but we need to write this speed in rad per second.

FInally, the force will be:



I hope it helps you!
Answer:
(A) Equation will be 
(B) RMS value of voltage will be 0.530 volt
Explanation:
We have given peak to peak voltage of ac wave = 1.5 volt
Peak to peak voltage of ac wave is equal to 2 times of peak voltage
So 

Frequency of ac wave is given f = 3 kHz
So angular frequency
= 2×3.14×3000 = 18840 rad/sec
So expression of equation will be
( As phase difference is 0 )
Now we have to find the rms value of voltage
So rms voltage will be equal to 
Answer:
Velocity, V = 33.33 m/s
Explanation:
Given the following data;
Mass = 180grams to kilograms = 180/1000 = 0.18 kg
Kinetic energy = 100J
To find the speed;
Kinetic energy can be defined as an energy possessed by an object or body due to its motion.
Mathematically, kinetic energy is given by the formula;

Where;
K.E represents kinetic energy measured in Joules.
M represents mass measured in kilograms.
V represents velocity measured in metres per seconds square.
Substituting into the equation, we have;
100 = ½*0.18*V²
Cross-multiplying, we have;
200 = 0.18*V²
V² = 200/0.18
V² = 1111.11
Taking the square root of both sides, we have;
Velocity, V = 33.33 m/s
Answer:
P /K = 1,997 10⁻³⁶ s⁻¹
Explanation:
For this exercise let's start by finding the radiation emitted from the accelerator
= 
the radius of the orbit is the radius of the accelerator a = r = 0.530 m
let's calculate
\frac{dE}{dt} = [(1.6 10⁻¹⁹)² 0.530²] / [6π 8.85 10⁻¹² (3 108)³]
P= \frac{dE}{dt}= 1.597 10⁻⁵⁴ W
Now let's reduce the kinetic energy to SI units
K = 5.0 10⁶ eV (1.6 10⁻¹⁹ J / 1 eV) = 8.0 10⁻¹⁹ J
the fraction of energy emitted is
P / K = 1.597 10⁻⁵⁴ / 8.0 10⁻¹⁹
P /K = 1,997 10⁻³⁶ s⁻¹