Answer:
A: 4
B: 7
C. 3
Source:
Trust me bro
(Don’t act put this I jus need to answer questions sorry)<\3
Take the stone's position at ground level to be the origin, and the downward direction to be negative. Then its position in the air
at time
is given by

Let
be the depth of the well. The stone hits the bottom of the well after 5.00 s, so that

Trick question? In order to have kinetic energy, an object must be moving. Therefore, in this case, kinetic energy would be 0. If it were asking about potential energy, it would be a different story.
The energy becomes 0.50 times in 6.72 s.
Let E represent the oscillator's initial energy, Et be the energy's final value at time t, where A is its beginning amplitude, At amplitude at time t, be. as the oscillator's energy increases to 0.50 times its initial value. We can replace the oscillator's total energy for the energy at time t to obtain the amplitude as shown below.
Et=0.50E
1
k(4₂)² = (0.5) - kA²
(4₂)² = (0.5) A²
At = 0.71A
So, the amplitude of the oscillator becomes 0.71 times its initial ar
0.71A = = A(0.96)¹2
log(0.71)
log(0.96)
8.4
n=
So, the time taken for n oscillation is obtained as,
t = n (0.800 s)
= (8.4) (0.800)
= 6.72 s
learn more about oscillators brainly.com/question/15169199
#SPJ1
The energy that was lost due to air resistance while she was bouncing is determined as 3,360 J.
<h3>Conservation of energy</h3>
The amount of energy lost due to air resistance while she was bouncing is determined from the principle of conservation of energy.
ΔE = P.E - Ux
ΔE = mgh - ¹/₂kx²
ΔE = (50)(9.8)(16) - ¹/₂(35)(16)²
ΔE = 3,360 J
Thus, the energy that was lost due to air resistance while she was bouncing is determined as 3,360 J.
Learn more about energy here: brainly.com/question/13881533
#SPJ1