Answer:
From the narrative in the question, there seem to have been a break failure and the ordered step of response to this problem is to
1) Put on the hazard light to inform other road users of a problem or potential fault with your car and so they should continue their journey with caution.
2) Avoid pressing on the acceleration pedal as this might cause the car to gradually slow down due to friction and gravity
3)Try navigate the car to the service lane. This is the less busy lane where cars are sometimes parked briefly.
4) Continuously pump the breaks to try stop the car. Continuously pumping the breaks might just help you build enough pressure to stop the car because often time, there are some pressure left in the break.
5) At this point, the speed of the car should be relatively slow. So at this point, you could try apply the emergency hand break. Do not pull the emergency hand breaks if the car is on high speed. Doing this may cause the car to skid off the road.
Answer:
<em>B. 68.6m</em>
Explanation:
<u>Free Fall Motion
</u>
When a body is left to move in the air with no friction, the motion is ruled only by the force of gravity. The vertical distance a body travels in the air after a time t is
.

We know the egg takes 3.74 seconds to reach the ground. The height it was launched from is


The closest correct option is
B. 68.6m
Answer:
car B will be 30 Km ahead of car A.
Explanation:
We'll begin by calculating the distance travelled by each car. This is illustrated below:
For car A:
Speed = 40 km/h
Time = 3 hours
Distance =?
Speed = distance / time
40 = distance / 3
Cross multiply
Distance = 40 × 3
Distance = 120 Km
For car B:
Speed = 50 km/h
Time = 3 hours
Distance =?
Speed = distance / time
50 = distance / 3
Cross multiply
Distance = 50 × 3
Distance = 150 Km
Finally, we shall determine the distance between car B an car A. This can be obtained as follow:
Distance travelled by car B (D₆) = 150 Km
Distance travelled by car A (Dₐ) = 120 Km
Distance apart =?
Distance apart = D₆ – Dₐ
Distance apart = 150 – 120
Distance apart = 30 Km
Therefore, car B will be 30 Km ahead of car A.
Answer:
Velocity (v) is a vector quantity that measures displacement (or change in position, Δs) over the change in time (Δt), represented by the equation v = Δs/Δt. Speed (or rate, r) is a scalar quantity that measures the distance traveled (d) over the change in time (Δt), represented by the equation r = d/Δt.
Explanation:
Answer:
The height at point of release is 10.20 m
Explanation:
Given:
Spring constant : K= 5 x 10 to the 3rd power n/m
compression x = 0.10 m
Mass of block m= 0.250 kg
Here spring potential energy converted into potential energy,
mgh = 1/2 kx to the 2 power
For finding at what height it rise,
0.250 x 9.8 x h = 1/2 x 5 x 10 to the 3 power x (0.10)to the 2 power) - ( g= 9.8 m/8 to the 2 power
h= 10.20
Therefore, the height at point of release is 10.20 m