Answer:
Both have the same amount of particles.
Explanation:
From Avogadro's hypothesis, we understood that 1 mole of any substance contains 6.02×10²³ particles.
This implies that 1 mole of Hydrogen contains 6.02×10²³ particles. Also, 1 mole of oxygen contains 6.02×10²³ particles.
Thus, 1 mole of Hydrogen and 1 mole of oxygen contains the same number of particles.
If I understand this right, the two elements are Nickel and Copper, elements 28 and 28, respectively. A nickel is worth 5 cents, and a penny, originally comprised of copper, is worth one - the total being six cents.
Answer: Photoelectric is characterized by or involving the emission of electrons from a surface by the action of light.
Photoelectric effect is the emission of electrons when a radiation of frequency higher than the threshold frequency falls on the surface of an element. The substance which undergoes photoelectric effect is called as photoelectric.
Ground state is the state representing the lowest energy state.
Excited state is the state which represents a high energy state.
An electron in ground state absorbs energy to move to the excited state.
The question is incomplete.
You need two additional data:
1) the original volume
2) what solution you added to change the volume.
This is a molarity problem, so remember molarity definition and formula:
M = n / V in liters: number of moles per liter of solution
To give you the key to answer this kind of questions, supppose the original volumen was 1 ml and that you added only water (solvent).
The original solution was:
V= 1 ml
M = 0.2 M
Using the formula for molarity, M = n / V
n = M×V = 0.2 M × (1 / 10000)l = 0.0002 moles
For the final solution:
n = 0.0002 moles
M = 0.04
From M = n / V ⇒ V = n / M = 0.002 moles / 0.04 M = 0.05 l
Change to ml ⇒ 0.05 l × 1000 ml / l = 50 ml. This would be the answer for the hypothetical problem that I assumed for you.
I hope this gives you all the cues you need to answer similar problems about molarity.
An atom has a nucleus and is made up of protons neutrons and electrons