Answer:
c
Explanation:
to reduce pressure on the reactants
Answer:
D
Explanation:
supports the plant,leaves and flowers
Hello!
For this problem, we will be applying <em>Charles' Law</em>:
V1/T1 = V2/T2
Now that we have the formula, let's convert the temperature to Kelvin.
27 + 273 = 300K
Let's plug everything in now!
10/300 = 12.0/x
Simplified:
1/30 = 12.0/x
Cross-multiply:
1x = 30*12.0
<u>x = 360</u>
<em>Check!</em>
10/300 = 12/360
300*12 = 360*10
3600 = 3600
Therefore, you would have to heat the gas at a temperature of 360K in order to raise the volume to 12.0L.
Answer:
THE PARTIAL PRESSURE OF OXYGEN GAS IN THE CONTAINER IS 92.67kPa WHICH IS OPTION B.
Explanation:
To calculate the partial pressure of oxygen gas collected over water, we use
Ptotal = Poxygen + P water
It is worthy to note that when oxygen is collected over water, it is mixed with water vapor and the total pressure in the container will be the sum of the pressure exerted by the oxygen gas and that of the water vapor at that given temperature.
At 20 C, the vapor pressure of water as given in the question is 2.33 kPa.
Using the above formula,
Ptotal = Poxygen + P water
Substituting for Poxygen, we have;
Poxygen = Ptotal - P water vapor
P oxygen = 95 .00 kPa - 2.33 kPa
P oxygen = 92.67 kPa.
The partial pressure of oxygen gas in the container is hence, 92.67kPa.