A )
T = mB g + mB a
T + mA a - mA g sin 35° = (Mi) mA g cos 35°
------------------------------------------------------------
T = 2.7 · 9.81 + 2.7 a
T = 26.487 + 2.7 a
26.487 + 2.7 a + 2.7 a - 2.7 · 9.81 · 0.574 = 0.15 · 2.7 · 9.81 · 0.819
5.4 a + 26.487 - 15.2023 = 3.2539
5.4 a = 8.0296
a = 1.487 ≈ 1.5 m/s²
B )
T = 2,7 · 9.81 = 26.487
26.487 - 15.2035 = (Mi) · 2.7 · 9.81 · 0.819
11.2835 = (Mi) · 21.69
(Mi) = 11.2835 : 21.69 = 0.52
Answer:
answer a, 4
Explanation:
when the 4 is before the compound it applies to the whole compound
<h2>
Average speed of transit train is 60 mph</h2>
Explanation:
Average speed of passenger train = 45 mph
Time taken from station A to station B for passenger train = 10:00 - 6:00 = 4 hours
Distance between station A to station B = 45 x 4 = 180 miles.
Time taken from station A to station B for transit train = 4 - 1 = 3 hours
Distance between station A to station B = Average speed of transit train x Time taken from station A to station B for transit train
180 = Average speed of transit train x 3
Average speed of transit train = 60 mph
Average speed of transit train is 60 mph
Answer:
20 m
Explanation:
From the equation of motion,
S = ut+1/2gt²................................. Equation 1
Where S = Height, u = initial velocity, t = time, g = acceleration due to gravity.
Note: Because the rocked is being dropped from a height, acceleration due to gravity is positive (g), and initial velocity (u) is negative
Given: t = 2.0 s, g = 10 m/s², u = 0 m/s (dropped from height)
Substituting into equation 1
S = 0(2) + 1/2(10)(2)²
S = 5(4)
S = 20 m
Hence the height of the the cliff above the pool is 20 m