Answer:
(a) 2.88×10⁻² W/m²
(b) 8.36×10⁻³ W/m²
Explanation:
The intensity of sound from an isotropic point source, with distance L is given as
I = P/(4πL²) .................................... Equation 1
Where I = intensity of sound, P = Power from the source, L = length, π = pie.
(a)
1.4 m from the source.
I = P/(4πL²)
Given: P = 0.71 W, L = 1.4 m, π = 3.14.
Substitute into equation 1
I = 0.71/(4×3.14×1.4²)
I = 0.71/24.6176
I = 0.0288 W/m².
I = 2.88×10⁻² W/m²
(b) 2.6 m from the source.
Given: P = 0.71 W, L = 2.6 m, π = 3.14
Substitute into equation 1
I = 0.71/(4×3.14×2.6²)
I = 0.71/84.9056
I = 0.00836 W/m²
I = 8.36×10⁻³ W/m²
Look, according to newton’s law of the conservation of mass power, the principle behind the electric generator would be when a conductor is moved in a magnetic field than the current is moved buh the conductor
Answer:
the wave represents the second harmonic.
Explanation:
Given;
length of the cord, L = 64 cm
The first harmonic of a cord fixed at both ends is given as;

The wavelength of a standing wave with two antinodes is calculated as follows;
L = N---> A -----> N + N ----> A -----> N
Where;
N is node
A is antinode
L = N---> A -----> N + N ----> A -----> N = λ/2 + λ/2
L = λ
The harmonic is calculated as;

Therefore, the wave represents the second harmonic.
L = λ
Answer:
the Group 1A metals such as sodium and potassium form +1 charges,
Explanation:
Answer:
a=3.53 m/s^2
Explanation:
Vo=0 m/s (because he is not moving at the start)
V1=15 m/s
t= 4.25 s
a = (V1-Vo) / t = 15/4.25 = 3.53 m/s^2