To solve the problem we will simply perform equivalence between both expressions. We will proceed to place your units and develop your internal operations in case there is any. From there we will compare and look at its consistency


At the same time we have that



Therefore there is not have same units and both are not consistent and the correct answer is B.
The total resistance of a series circuit is equal to the sum of individual resistances. Voltage applied to a series circuit is equal to the sum of the individual voltage drops. The voltage drop across a resistor in a series circuit is directly proportional to the size of the resistor.
If you know the total current and the voltage across the whole circuit, you can find the total resistance using Ohm's Law: R = V / I. For example, a parallel circuit has a voltage of 9 volts and total current of 3 amps. The total resistance RT = 9 volts / 3 amps = 3 Ω
Current: The total circuit current is equal to the sum of the individual branch currents. Resistance: Individual resistances diminish to equal a smaller total resistance rather than add to make the total.
60 days, tell me if I'm correct please.
The two wires carry current in opposite directions: this means that if we see them from above, the magnetic field generated by one wire is clock-wise, while the magnetic field generated by the other wire is anti-clockwise. Therefore, if we take a point midway between the two wires, the resultant magnetic field at this point is just the sum of the two magnetic fields, since they act in the same direction.
Therefore, we should calculate the magnetic field generated by each wire and then calculate their sum. We are located at a distance r=0.10 m from each wire.
The magnetic field generated by wire 1 is:

The magnetic field generated by wire 2 is:

And so, the resultant magnetic field at the point midway between the two wires is
Answer: The silver pellet will release heat
Explanation:
Based on the case scenario, the silver pellet has a higher temperature that the system of water and copper cup and is thereby added to the system. Because of the higher kinetic energy of the molecules of silver in the silver pellet, some of energy will be released to the water and copper cup system because the system will aim to achieve thermal equilibrium.