Answer:
local government agencies
Ratatouille is my momCan you lend me 700 because I used my toaster as a bath heater and now my legs are gone plz I need money for bandages
Answer:
I. 6 cells .
II. Series connection.
Explanation:
I. Determination of the number of cells needed.
From the question given above,
Total voltage (V) = 9 V
1.5 V = 1 cell
Number of cells needed =?
The number of cells needed to make the 9V battery can be obtained as follow:
1.5 V = 1 cell
Therefore,
9 V = 9 V × 1 cell / 1.5 V
9 V = 6 cells
Thus, 6 cells of 1.5 V each is needed
II. Determination of the connection line
Total voltage (Vₜ) = 9 V
Cell 1 (V₁) = 1.5 V
Cell 2 (V₂) = 1.5 V
Cell 3 (V₃) = 1.5 V
Cell 4 (V₄) = 1.5 V
Cell 5 (V₅) = 1.5 V
Cell 6(V₆ ) = 1.5 V
For parrall connection:
Vₜ = V₁ = V₂ = V₃ = V₄ = V₅ = V₆
9 V = 1.5 V =... = 1.5 V
For series connection:
Vₜ = V₁ + V₂ + V₃ + V₄ + V₅ + V₆
9 = 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5
9 V = 9 V
From the illustration above, we can see that series connection of each cells will give a total volt of 9 V unlike the parallel connection which resulted to 1.5 V.
Therfore, the cells should be arranged in series connection
Answer:
(a) the observed frequency is 200 Hz
(b) the observed frequency is 188 Hz.
Explanation:
speed of the truck, Vs = 27 m/s
frequency of the truck as it approaches, Fs = 185 Hz
(a) Apply Doppler effect to determine the frequency you will hear.
As the truck approaches you, the observed frequency will be higher than the source frequency because of decrease in distance.
![F_s = F_o [\frac{V}{V_S + V} ]](https://tex.z-dn.net/?f=F_s%20%3D%20F_o%20%5B%5Cfrac%7BV%7D%7BV_S%20%2B%20V%7D%20%5D)
Where;
Fo is the observed frequency which is the frequency you will hear.
V is speed of sound in air

(b) Apply the following formula for a moving observer and a moving source;
](https://tex.z-dn.net/?f=F_o%20%3D%20F_s%5B%5Cfrac%7BV-V_o%7D%7BV%7D%20%5D%28%5Cfrac%7BV%7D%7BV-V_S%7D%20%29)
The observed frequency is negative since you are driving away from the truck and the source frequency is also negative since it is driving towards you.
\\\\F_o = 185[\frac{340-22}{340} ](\frac{340}{340-27} )\\\\F_o = 185(0.9353)(1.0863)\\\\F_o = 188 \ Hz](https://tex.z-dn.net/?f=F_o%20%3D%20F_s%5B%5Cfrac%7BV-V_o%7D%7BV%7D%20%5D%28%5Cfrac%7BV%7D%7BV-V_S%7D%20%29%5C%5C%5C%5CF_o%20%3D%20185%5B%5Cfrac%7B340-22%7D%7B340%7D%20%5D%28%5Cfrac%7B340%7D%7B340-27%7D%20%29%5C%5C%5C%5CF_o%20%3D%20185%280.9353%29%281.0863%29%5C%5C%5C%5CF_o%20%3D%20188%20%5C%20Hz)
Answer:
25.4 centimeters?
Explanation:
I’m guessing you needed the conversion? Let me know.