Answer: none of the above
Explanation:
It should be 2,1,1,2 to give a balanced chemical reaction
<h3><u>Answer</u>;</h3>
4) size
<h3><u>Explanation</u>;</h3>
- The mineral’s physical properties are used in identifying minerals and are determined by its chemical composition and crystal structure.
- <u>Streak</u> is the color of the mineral in powdered form and since it is a more accurate illustration of the mineral’s color, its is a more reliable property of minerals than color for identification.
- <u>Hardness</u> is one of the better properties of minerals to use for identifying a mineral. Hardness is a measure of the mineral’s resistance to scratching.
- <u>Density</u> may be used to identify minerals. It is used to describe the amount of matter in a certain amount of space. Substances that have more matter packed into a given space have higher densities.
A. o. I know gamma can I Hope this helps
A now i remember yeah gamma only
Answer:
Explanation has been given below.
Explanation:
- Chloroform has three polar C-Cl bonds. Methylene chloride has two polar C-Cl bonds. So it is expected that chloroform should be more polar and posses higher dipole moment than methylene chloride.
- Two factors are liable for the opposite trend observed in dipole moments of methylene chloride and chloroform.
- First one is the number of hyperconjugative hydrogen atoms present in a molecule. Hyperconjugation occurs with vacant d-orbital of Cl atom. Hyperconjugation amplifies charge separation in a molecule resulting higher dipole moment.
- Methylene chloride has two hyperconjugative hydrogen atoms and chloroform has one hyperconjugative hydrogen atom.Therefore methylene chloride should have higher charge separation as compared to chloroform.
- Second one is induction of opposite polarity in a C-Cl bond by another C-Cl bond in a molecule. Higher the opposite induction of polarity, lower the charge separation in a molecule and hence lower the dipole moment of a molecule.
- Chloroform has three C-Cl bonds and methylene chloride has two C-Cl bonds. Therefore opposite induction is higher for chloroform resulting it's lower dipole moment.
Answer: The enthalpy change for formation of butane is -125 kJ/mol
Explanation:
The balanced chemical reaction is,
The expression for enthalpy change is,
Putting the values we get :
Thus enthalpy change for formation of butane is -125 kJ/mol