Answer:21.18 m
Explanation:
Given
initial speed u=10 m/s
height of building h=22 m
time taken to complete 22 m

initial vertical velocity =0



Horizontal Distance moved



Answer:
This can be translated to:
"find the electrical charge of a body that has 1 million of particles".
First, it will depend on the charge of the particles.
If all the particles have 1 electron more than protons, we will have that the charge of each particle is q = -e = -1.6*10^-19 C
Then the total charge of the body will be:
Q = 1,000,000*-1.6*10^-19 C = -1.6*10^-13 C
If we have the inverse case, where we in each particle we have one more proton than the number of electrons, the total charge will be the opposite of the one of before (because the charge of a proton is equal in magnitude but different in sign than the charge of an electron)
Q = 1.6*10^-13 C
But commonly, we will have a spectrum with the particles, where some of them have a positive charge and some of them will have a negative charge, so we will have a probability of charge that is peaked at Q = 0, this means that, in average, the charge of the particles is canceled by the interaction between them.
Answer:
The mass of the box:
m = 60 kg
Explanation:
Given:
F = 150 N
g = 10 m/s²
_________
m - ?
Coefficient of friction wood on wood:
μ = 0.25
Friction force:
F₁ = μ*m*g
Newton's Third Law:
F = F₁
F = μ*m*g
The mass of the box:
m = F / ( μ*g) = 150 / (0.25*10) = 60 kg
One possible consequence is that the warmer temperature cause the polar ice to melt even faster
Answer:
The answer is below
Explanation:
The speed of the boat in still water is perpendicular to the speed of the water flow. Therefore the speed relative to the ground (V), the speed of flow and the speed of the boat in still water form a right angled triangle. Hence the speed relative to the ground is given as:
V² = 56² + 126²
V² = 19012
V = 137.9 m/s