Answer:
Explanation:
Given
Power
Voltage applied
Resistance of the bulb is given by
Current drawn by the Power source is given by
Answer:
The answer will be Rule 61G15-23 F.A.C, relating to Seals.
Explanation:
According to the description given by: Florida administrative code&Florida administrative register the Minimum requirements for engineering documents are in the section 'Final 61G15-23' from 11/3/2015. This document provides specifications of materials required for the safe operation of the system that is the result of engineering calculations, knowledge and experience.
Answer:
Explanation:
The turbine at steady-state is modelled after the First Law of Thermodynamics:
The specific enthalpies at inlet and outlet are, respectively:
Inlet (Superheated Steam)
Outlet (Liquid-Vapor Mixture)
The power produced by the turbine is:
Answer:
a) v = +/- 0.323 m/s
b) x = -0.080134 m
c) v = +/- 1.004 m/s
Explanation:
Given:
a = - (0.1 + sin(x/b))
b = 0.8
v = 1 m/s @ x = 0
Find:
(a) the velocity of the particle when x = -1 m
(b) the position where the velocity is maximum
(c) the maximum velocity.
Solution:
- We will compute the velocity by integrating a by dt.
a = v*dv / dx = - (0.1 + sin(x/0.8))
- Separate variables:
v*dv = - (0.1 + sin(x/0.8)) . dx
-Integrate from v = 1 m/s @ x = 0:
0.5(v^2) = - (0.1x - 0.8cos(x/0.8)) - 0.8 + 0.5
0.5v^2 = 0.8cos(x/0.8) - 0.1x - 0.3
- Evaluate @ x = -1
0.5v^2 = 0.8 cos(-1/0.8) + 0.1 -0.3
v = sqrt (0.104516)
v = +/- 0.323 m/s
- v = v_max when a = 0:
-0.1 = sin(x/0.8)
x = -0.8*0.1002
x = -0.080134 m
- Hence,
v^2 = 1.6 cos(-0.080134/0.8) -0.6 -0.2*-0.080134
v = sqrt (0.504)
v = +/- 1.004 m/s
To be honest theres a lot...