F = q₁q₂C / r²
F force
q charge
C Coulomb constant
r separation between charges
Answer:
h’ = 1/9 h
Explanation:
This exercise must be solved in parts:
* Let's start by finding the speed of sphere B at the lowest point, let's use the concepts of conservation of energy
starting point. Higher
Em₀ = U = m g h
final point. Lower, just before the crash
Em_f = K = ½ m
energy is conserved
Em₀ = Em_f
m g h = ½ m v²
v_b =
* Now let's analyze the collision of the two spheres. We form a system formed by the two spheres, therefore the forces during the collision are internal and the moment is conserved
initial instant. Just before the crash
p₀ = 2m 0 + m v_b
final instant. Right after the crash
p_f = (2m + m) v
the moment is preserved
p₀ = p_f
m v_b = 3m v
v = v_b / 3
v = ⅓ 
* finally we analyze the movement after the crash. Let's use the conservation of energy to the system formed by the two spheres stuck together
Starting point. Lower
Em₀ = K = ½ 3m v²
Final point. Higher
Em_f = U = (3m) g h'
Em₀ = Em_f
½ 3m v² = 3m g h’
we substitute
h’=
h’ =
h’ = 1/9 h
Answer:
f = q
Explanation:
In the attachment we can see a diagram of the parallel rays.
The dotted line represents the normal to the mirror surface
These rays when reflected using the constructor equation
where p and q are the distance to the object and the image respectively.
Since the rays are parallel P = inf
1 / f = 1 / inf + 1 / q
f = q
this means that all the rays focus on one focal point.
Answer:
X and Z
Explanation:
Conduction occurs through direct physical contact. Heat transferred from the pot to the handle, and from the handle to the hand, are both examples of conduction.
Can you include an image of the object and it’s dimensions?