Answer:
1.35 moles of O²⁻
21.6 grams of O²⁻
Explanation:
We know that the charge on Aluminium ion is +3 (i.e. Al³⁺) while, the charge on Oxide ion is -2 (i.e. O²⁻). Therefore, the overall neutral Al₂O₃ compound has 2 Al³⁺ ions and 3 O²⁻ ions. Since, we can say that,
1 mole of Al₂O3 contains = 3 moles of O²⁻ ions
So,
0.450 moles of Al₂O₃ will have = X g of O²⁻
Solving for X,
X = 0.450 mol × 3 mol ÷ 1 mol
X = 1.35 moles of O²⁻
As the mass of an atom is mainly due to the presence of protons and neutrons hence, the addition of two electrons (-ve 2 shows two gained electron) to Oxygen will make a negligible change to the atomic masss of Oxygen because electron is said to be almost 1800 times lighter than proton. Hence, the ionic mass of O²⁻ will be 16 g/mol and the mass of given moles is calculated as,
Mass = Moles × Ionic Mass
Mass = 1.35 mol × 16 g/mol
Mass = 21.6 g
It might be energy or batteries I'm not saying it's right but I might be wrong
The amount remaining at the end of 5 half-lives is 7.81×10¹³ g
From the question given above, the following data were obtained:
- Half-life (t½) = 5730 years
- Original amount (N₀) = 2.5×10¹⁵ g
- Number of half-lives (n) = 5
- Amount remaining (N) =?
The amount remaining can be obtained as follow:
N = 1/2ⁿ × N₀
N = 1/2⁵ × 2.5×10¹⁵
N = 1/32 × 2.5×10¹⁵
N = 0.03125 × 2.5×10¹⁵
N = 7.81×10¹³ g
Therefore, the amount remaining after 5 half-lives is 7.81×10¹³ g
Learn more about half-life: brainly.com/question/25783920
Because there is no need for them
Tell the teacher, do NOT clean it up yourself.