In a problem where a child is danger form drowning from a river who has a current of 3.1km/hr to east and the child is 0.6km fro the shore and the upstream is 2,5km from the dock. So base on the question the boat with a speed of 24.8 km/hr is 1.9 km because the child is 0.6 km off the dock so 2.5 minus 0.6
To solve this problem it is necessary to take into account the kinematic equations of motion and the change that exists in the volume flow.
By definition the change in speed is given by

Where,
x= distance
final velocity
initial velocity
a = acceleration
On the other hand we know that the flow of a fluid is given by

Where,
A = Area
v = Velocity
PART A )
Applying this equation to the previously given values we have to




Therefore the velocity of the water leaving the hole is 17.48m/s
PART B )
In the case of the hole we take the area of a circle, therefore replacing in the flow equation we have to,





The diameter is 2 times the radius, then is
m or 1.91mm
<em>Note: The rate flow was converted from minutes to seconds.</em>
<span>Winds cause waves to form. The stronger the wind, the larger the waves. Wind
</span>
Answer:
Explanation:
Tides occur mainly in oceans because that is basically one huge body of water that is free to move all over the earth. Lakes and rivers do not cover enough area to have their water be moved significantly by gravity, or in other words, to have tides.
This is false. Current is the speed of the charge, 1 amp of current is 1 coulomb per second. So you can imagine the current of a circuit as the current of a river. In a parallel circuit, the river breaks into two separate streams. Some of the water goes down one river, some goes down the other. However, the total amount of water/coulombs never changes. This means that some of the total current will go down one river, and one the other. However, with less coulombs now the current will decrease.
Long story short, since there are two paths, the charge will split and depending on the resistance of each parallel stream a different amount of charge will go down each branch.