1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NISA [10]
3 years ago
6

What is the friction factor for fully developed flow in a circular pipe where Reynolds number is 1000

Engineering
1 answer:
Pie3 years ago
7 0
Shear stress decreases along the flow direction. That is why the pressure drop is highest in the entrance region of a pipe, which increases the average friction factor for the whole pipe. ... In fully developed region the pressure gradient and the shear stress in flow are in balance.
You might be interested in
What type of engineer works to create a practical and safe energy source?
Fittoniya [83]
Why did you put this on here when you know the answer lol
4 0
3 years ago
For an Otto cycle, plot the cycle efficiency as a function of compression ratio from 4 to 16.
Elza [17]

Assumptions:

  • Steady state.
  • Air as working fluid.
  • Ideal gas.
  • Reversible process.
  • Ideal Otto Cycle.

Explanation:

Otto cycle is a thermodynamic cycle widely used in automobile engines, in which an amount of gas (air) experiences changes of pressure, temperature, volume, addition of heat, and removal of heat. The cycle is composed by (following the P-V diagram):

  • Intake <em>0-1</em>: the mass of working fluid is drawn into the piston at a constant pressure.
  • Adiabatic compression <em>1-2</em>: the mass of working fluid is compressed isentropically from State 1 to State 2 through compression ratio (r).

        r =\frac{V_1}{V_2}

  • Ignition 2-3: the volume remains constant while heat is added to the mass of gas.
  • Expansion 3-4: the working fluid does work on the piston due to the high pressure within it, thus the working fluid reaches the maximum volume through the compression ratio.

         r = \frac{V_4}{V_3} = \frac{V_1}{V_2}

  • Heat Rejection 4-1: heat is removed from the working fluid as the pressure drops instantaneously.
  • Exhaust 1-0: the working fluid is vented to the atmosphere.

If the system produces enough work, the automobile and its occupants will propel. On the other hand, the efficiency of the Otto Cycle is defined as follows:

           \eta = 1-(\frac{1}{r^{\gamma - 1} } )

where:

           \gamma = \frac{C_{p} }{C_{v}} : specific heat ratio

Ideal air is the working fluid, as stated before, for which its specific heat ratio can be considered constant.

           \gamma = 1.4

Answer:

See image attached.

5 0
3 years ago
What do u call a bad bird
statuscvo [17]

Answer:

A buzzerd

Explanation:

4 0
3 years ago
How many electrons move past a fixed reference point every t = 2.55 ps if the current is i = 7.3 μA ? Express your answer as an
iris [78.8K]

Answer:

116.3 electrons

Explanation:

Data provided in the question:

Time, t = 2.55 ps = 2.55 × 10⁻¹² s

Current, i = 7.3 μA = 7.3 × 10⁻⁶ A

Now,

we know,

Charge, Q = it

thus,

Q = (7.3 × 10⁻⁶) × (2.55 × 10⁻¹²)

or

Q = 18.615 × 10⁻¹⁸ C

Also,

We know

Charge of 1 electron, q = 1.6 × 10⁻¹⁹ C

Therefore,

Number of electrons past a fixed point = Q ÷ q

= [ 18.615 × 10⁻¹⁸ ] ÷ [ 1.6 × 10⁻¹⁹ ]

= 116.3 electrons

4 0
3 years ago
The gas expanding in the combustion space of a reciprocating engine has an initial pressure of 5 MPa and an initial temperature
Anit [1.1K]

Answer:

a). Work transfer = 527.2 kJ

b). Heat Transfer = 197.7 kJ

Explanation:

Given:

P_{1} = 5 Mpa

T_{1} = 1623°C

                       = 1896 K

V_{1} = 0.05 m^{3}

Also given \frac{V_{2}}{V_{1}} = 20

Therefore, V_{2} = 1  m^{3}

R = 0.27 kJ / kg-K

C_{V} = 0.8 kJ / kg-K

Also given : P_{1}V_{1}^{1.25}=C

   Therefore, P_{1}V_{1}^{1.25} = P_{2}V_{2}^{1.25}

                     5\times 0.05^{1.25}=P_{2}\times 1^{1.25}

                     P_{2} = 0.1182 MPa

a). Work transfer, δW = \frac{P_{1}V_{1}-P_{2}V_{2}}{n-1}

                                  \left [\frac{5\times 0.05-0.1182\times 1}{1.25-1}  \right ]\times 10^{6}

                              = 527200 J

                             = 527.200 kJ

b). From 1st law of thermodynamics,

Heat transfer, δQ = ΔU+δW

   = \frac{mR(T_{2}-T_{1})}{\gamma -1}+ \frac{P_{1}V_{1}-P_{2}V_{2}}{n-1}

  =\left [ \frac{\gamma -n}{\gamma -1} \right ]\times \delta W

  =\left [ \frac{1.4 -1.25}{1.4 -1} \right ]\times 527.200

  = 197.7 kJ

6 0
3 years ago
Other questions:
  • Find the resolving power of a Fabry-Perot interferometer in which two silver coated plates have reflectance of ???? = 0.9, if th
    12·1 answer
  • A liquid-liquid extraction process consists of two units, a mixer and a separator. One inlet stream to the mixer consists of two
    7·1 answer
  • Block B starts from rest, block A moves with a constant acceleration, and slider block C moves to the right with a constant acce
    11·1 answer
  • By efficiency, we generally mean the ratio of the desired output to the required input. That is, efficiency is a measure of what
    7·1 answer
  • How does flextape adhere under water?​
    8·1 answer
  • What is the best way to submit your assignments?
    11·2 answers
  • The E7018 Electrode produces a/an
    9·1 answer
  • Steam enters an adiabatic condenser (heat exchanger) at a mass flow rate of 5.55 kg/s where it condensed to saturated liquid wat
    11·1 answer
  • Stress that acts in the plane of a cut section, rather than at right angles to the section is called:_______
    6·1 answer
  • If a material is found to be in the tertiary phase of creep, the following procedure should be implemented:
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!