Answer:
There is a 99.99998% probability that at least one valve opens.
Step-by-step explanation:
For each valve there are only two possible outcomes. Either it opens on demand, or it does not. This means that we use the binomial probability distribution to solve this problem.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

In which
is the number of different combinatios of x objects from a set of n elements, given by the following formula.

And p is the probability of X happening.
In this problem we have that:

Calculate P(at least one valve opens).
This is 
Either no valves open, or at least one does. The sum of the probabilities of these events is decimal 1. So:


So


Finally

There is a 99.99998% probability that at least one valve opens.
Ok so I like to go in steps with these questions- first draw a picture and identify your variables.
W=width
L= 3w-1
Now we know that length times width gets us area so we plug in our variables into the area equation.
200 = w(3w-1)
When you foil that equation you end up with a quadratic : 3w^2-w-200 = 0
Either factor that or use the quadratic formula to get
w= 8.33 and w= -8
Since you can't have a negative dimension you need to use 8.33 and plug it back into your length equation.
Final answer:
w= 8.33ft
l= 23.99ft
*Now I simplified the decimals a little bit so you end up with 199.8ft^2 for the area so just add a few decimals on here and there*
Answer:
0.8
Step-by-step explanation:
20 / 100 = 0.2
1 - 0.2 = 0.8
Answer:

Step-by-step explanation:
Let the line is
where
is slope and
is
.
The line is parallel to
, slope of both the lines will be same.
Find the slope of 

Slope of line

So the line will be 
It passes through
.

Hence the line is 

Answer:
x2 + 12x + 4x + 48
Step-by-step explanation:
i just took the assignment