Answer:
The higher the temperature the more water evaporates and that affects the convection process
Explanation:
Answer:
10.88 g
Explanation:
We have:
[CH₃COOH] = 0.10 M
pH = 5.25
Ka = 1.80x10⁻⁵
V = 250.0 mL = 0.250 L
The pH of the buffer solution is:
(1)
By solving equation (1) for [CH₃COONa*3H₂O] we have:
![[CH_{3}COONa*3H_{2}O] = 10^{-0.495} = 0.32 M](https://tex.z-dn.net/?f=%5BCH_%7B3%7DCOONa%2A3H_%7B2%7DO%5D%20%3D%2010%5E%7B-0.495%7D%20%3D%200.32%20M)
Hence, the mass of the sodium acetate tri-hydrate is:
![m = moles*M = [CH_{3}COONa*3H_{2}O]*V*M = 0.32 mol/L*0.250 L*136 g/mol = 10.88 g](https://tex.z-dn.net/?f=m%20%3D%20moles%2AM%20%3D%20%5BCH_%7B3%7DCOONa%2A3H_%7B2%7DO%5D%2AV%2AM%20%3D%200.32%20mol%2FL%2A0.250%20L%2A136%20g%2Fmol%20%3D%2010.88%20g)
Therefore, the number of grams of CH₃COONa*3H₂O needed to make an acetic acid/sodium acetate tri-hydrate buffer solution is 10.88 g.
I hope it helps you!
I believe doctors use (3) Co-60 to treat ILWs. Uranium and Carbon are not used, and a different isotope of lead is used to be attached to monoclonal antibodies.
Yes! since its clear, <span>due to formation of ammonium hydroxide in water.</span>
Answer : The correct option is, 0.21 moles
Solution : Given,
Molarity of the solution = 0.85 M = 0.85 mole/L
Volume of solution = 250 ml = 0.25 L 
Molarity : It is defined as the number of moles of solute present in one liter of the solution.
Formula used :

Now put all the given values in this formula, we get the moles of solute of the solution.


Therefore, the moles of solute is, 0.21 moles