Answer:
Second projectile is 1.4 times faster than first projectile.
Explanation:
By linear momentum conservation
Pi = Pf
m x U + M x 0 = (m + M) x V

Now Since this projectile + pendulum system rises to height 'h', So using energy conservation:
KEi + PEi = KEf + PEf
PEi = 0, at reference point
KEf = 0, Speed of system zero at height 'h'

PEf = (m + M) g h
So,


So from above value of V
Initial velocity of projectile =U

Now Since mass of projectile and pendulum are constant, So Initial velocity of projectile is proportional to the square root of height swung by pendulum.
Which means



U₂ = 1.41 U₁
Therefore we can say that ,Second projectile is 1.4 times faster than first projectile.
Answer:
Explanation:
The x component is the adjacent side making up the given angle (39.4)
The vector is the hypotenuse.
The definition of the cos (x) is adjacent / hypotenuse.
cos(39.4) = adjacent / 47.3 Multiply both sides by 47.3
47.3 * cos(39.4) = adjacent Cos(39.4) = 0.7727
adjacent = 36.55
Since, the options are not given the question is incomplete the complete question is as follows.:
Which of the following is a major way in which oceans contribute to weather systems?
provide a diverse habitat for many organisms
experience changes in amounts of dissolved salts
store and transport the Sun's heat energy
reach depths that can be as much as 12000 meters
Answer: Store and transport the Sun's heat energy.
Explanation:
Oceanic currents are just like a conveyor belt. It helps in transportation of the warm water and the precipitation from the equator to the poles and the cold water in the poles towards the tropics. This way the oceans counteract the uneven distribution of the radiation of sun that reaches upto the surface earth. This will regulate the global climate.