Answer:
The force exerted on the rock by the eruption is, D. 902.5 N
Explanation:
Given data,
The mass of the rock ejected by the volcano, m = 95 kg
The acceleration of the ejected rock, a 9.5 m/s²
The force acting on an object is defined as the product of the mass and its acceleration. It is given by the relation,
F = m x a
= 95 x 9.5
= 902.5 N
Hence, the force exerted on the rock by the eruption is, F = 902.5 N
Province. Is what is located away from the capital.
Answer:
The work done on the suitcase is, W = 1691 J
Explanation:
Given data,
The force on the suitcase is, F = 89 N
The distance Russell dragged the suitcase, S = 19 m
The work done on the suitcase by Russell is equal to the work done on the suitcase to overcome the friction
The work done on the suitcase by Russell is given by the formula
W = F · S
Substituting the given values,
W = 89 N x 19 m
W = 1691 J
Hence, the work done on the suitcase is, W = 1691 J
Answer:
D. 2^(3/2)
Explanation:
Given that
T² = A³
Let the mean distance between the sun and planet Y be x
Therefore,
T(Y)² = x³
T(Y) = x^(3/2)
Let the mean distance between the sun and planet X be x/2
Therefore,
T(Y)² = (x/2)³
T(Y) = (x/2)^(3/2)
The factor of increase from planet X to planet Y is:
T(Y) / T(X) = x^(3/2) / (x/2)^(3/2)
T(Y) / T(X) = (2)^(3/2)