Answer:

is time required to heat to boiling point form initial temperature.
Explanation:
Given:
initial temperature of water, 
time taken to vapourize half a liter of water, 
desity of water, 
So, the givne mass of water, 
enthalpy of vaporization of water, 
specific heat of water, 
Amount of heat required to raise the temperature of given water mass to 100°C:



Now the amount of heat required to vaporize 0.5 kg of water:

where:
mass of water vaporized due to boiling


Now the power rating of the boiler:



Now the time required to heat to boiling point form initial temperature:


F=ma
a=(v2-v1)/(t2-t1)
a=(6-0)/(12-0)
a=6/12
a= .5 m/s^2
f=2300kg*.5m/s^2
f=1150N
f=1200N if using correct sig figs
Answer:
It's centripetal acceleration is 301.7 m/s²
Explanation:
The formula to be used here is that of the centripetal acceleration which is
ac = rω²
where ac is the centripetal acceleration = ?
ω is the angular velocity = 3 revolutions per second is to be converted to radian per second: 3 × 2π = 3 × 2 × 3.14 = 18.84 rad/s
r is the radius = 0.85 m
ac = 0.85 × 18.84²
ac = 301.7 m/s²
It's centripetal acceleration is 301.7 m/s²
The distance in meters she would have moved before she begins to slow down is 11.25 m
<h3>
LINEAR MOTION</h3>
A straight line movement is known as linear motion
Given that Ann is driving down a street at 15 m/s. Suddenly a child runs into the street. It takes Ann 0.75 seconds to react and apply the brakes.
To know how many meters will she have moved before she begins to slow down, we need to first list all the given parameters.
From definition of speed,
speed = distance / time
Make distance the subject of the formula
distance = speed x time
distance = 15 x 0.75
distance = 11.25m
Therefore, the distance in meters she would have moved before she begins to slow down is 11.25 m
Learn more about Linear motion here: brainly.com/question/13665920
Answer:
3x10⁴v
Explanation:
Using
Wavelength= h/ √(2m.Ke)
880nm = 6.6E-34/√ 2.9.1E-31 x me
Ke= 6.6E-34/880nm x 18.2E -31.
5.6E-27/18.2E-31
= 3 x 10⁴ Volts