Answer:
O-H bond
Explanation:
Let us work out the electronegativity difference between the elements in each bond in order to decide which of them is most polar.
For the C-O bond
2.55 - 2.2 =0.35
For the F-F bond
3.98 - 3.98 = 0
For the O-H bond
3.44 - 2.2 = 1.24
For the N-H bond
3.04 - 2.2 = 0.84
The O-H bond has the highest electronegativity difference, hence it is he most polar bond.
Greenhouse gases act to <u>increase</u> temperatures by <u>absorbing</u> thermal infrared radiation.
We have already learned that Earth's atmosphere is composed often of nitrogen and oxygen. Those gases are transparent to incoming solar radiation. they may be also transparent to outgoing infrared radiation, which means that they do not take in or emit sun or infrared radiation.
The multiplied quantities of greenhouse gases human sports are adding to the environment have dissatisfied the balance that has been in location for the reason that ceases of the closing ice age, including greater greenhouse gases decreases the amount of infrared radiation energy leaving the atmosphere.
Greenhouse gases inside the ecosystem time and again absorb and re-radiate infrared radiation (warmth). strength radiated from Earth's surface as warmth, or infrared radiation is absorbed and re-radiated by using greenhouse gases, impeding the loss of warmth from our surroundings to area.
Learn more about radiations here brainly.com/question/24469662
#SPJ4
Molarity = (Mass/ molar mass) x (1/ volume of solution in Litres)
Mass = Molarity x molar mass x volume of solution in Litres
Molarity of Tris = 100 mM = 0.1 M
volume of Tris sol. = 100 mL = 0.1 L
molar mass of Tris = 121.1 g/mol
Hence,
mass of Tris = Molarity of Tris x molar mass ofTris x volume of Tris solution
= 0.1 M x 121.1 g/mol x 0.1 L
= 1.211 g
mass of Tris = 1.211 g
Combustion is a chemical reaction between a fuel and an oxidant, oxygen, to give off combustion products and heat. Complete combustion results when all of the fuel is consumed to form carbon dioxide and water, as in the case of a hydrocarbon fuel. Incomplete combustion results when insufficient oxygen reacts with the fuel, forming soot and carbon monoxide.
The complete combustion of propane proceeds through the following reaction:

+

-->

+

Combustion is an exothermic reaction, which means that it gives off heat as the reaction proceeds. For the complete combustion of propane, the heat of combustion is (-)2220 kJ/mole, where the minus sign indicates that the reaction is exothermic.
The molar mass of propane is 44.1 grams/mole. Using this value, the number of moles propane to be burned can be determined from the mass of propane given. Afterwards, this number of moles is multiplied by the heat of combustion to give the total heat produced from the reaction of the given mass of propane.
14.50 kg propane x <u> 1000 g </u> x <u> 1 mole propane </u> x <u> 2220 kJ </u>
1 kg 44.1 g 1 mole
=
729,931.97 kJ