We can rearrange the ideal gas equation:
PV = nRT, where n is the number of moles equivalent to:
n = mass / Mr
PV = mRT/Mr
m/V = PMr/RT
density = PMr / RT; where Mr and R are constant.
Answer:
1.428 moles
Explanation:
If 0.0714 moles of N2 gas occupies 1.25 L space,
how many moles of N2 have a volume of 25.0 L?
Assume temperature and pressure stayed constant.
we experience it 0.0714 moles: 1.25L space
x moles : 25L of space
to get the x moles, cross multiply
(0.0714 x 25)/1.25
1.785/1.25 = 1.428 moles
Answer:
to determine of it is a solid liquid or gas.
Explanation:
The melting point is the temperature at which a substance converts from a solid state to a liquid state.
Answer:
0.719M AgNO₃
Explanation:
Based on the reaction:
MgBr₂ + 2AgNO₃ ⇄ 2AgBr + Mg(NO₃)₂
<em>1 mole of magnesium bromide reacts completely with 2 moles of AgNO₃</em>
<em />
To find molarity of AgNO₃ solution we need to determine moles of AgNO₃ and, as molarity is the ratio of moles over liter (13.9mL = 0.0139L). Now, to determine moles of AgNO₃ we need to use the reaction, thus:
<em>Moles AgNO₃:</em>
<em />
Moles of MgBr₂ are:
50.0mL = 0.050L * (0.100mol / L) = 0.00500 moles of MgBr₂.
As the silver nitrate reacts completely and 2 moles of AgNO₃ reacts per mole of MgBr₂:
0.00500 moles MgBr₂ * (2 moles AgNO₃ / 1 mole MgBr₂) =
0.0100 moles of AgNO₃ are in the solution.
And molarity is:
0.0100 moles AgNO₃ / 0.0139L =
<h3>0.719M AgNO₃</h3>