Answer:
Hello your question is incomplete attached below is the missing part and answer
options :
Effect A
Effect B
Effect C
Effect D
Effect AB
Effect AC
Effect AD
Effect BC
Effect BD
Effect CD
Answer :
A = significant
B = significant
C = Non-significant
D = Non-significant
AB = Non-significant
AC = significant
AD = Non-significant
BC = Non-significant
BD = Non-significant
CD = Non-significant
Explanation:
The dependent variable here is Time
Effect of A = significant
Effect of B = significant
Effect of C = Non-significant
Effect of D = Non-significant
Effect of AB = Non-significant
Effect of AC = significant
Effect of AD = Non-significant
Effect of BC = Non-significant
Effect of BD = Non-significant
Effect of CD = Non-significant
Answer:
a) 0.489
b) 54.42 kg/s
c) 247.36 kW/s
Explanation:
Note that all the initial enthalpy and entropy values were gotten from the tables.
See the attachment for calculations
Search engines use specific algorithms based on their data size and structure to produce a return value.
Linear Search Algorithm. ...
Binary Search Algorithm. ...
Relevancy. ...
Individual Factors. ...
Off-Page Factors.
Answer:
Wind energy is converted to Mechanical energy which is then converted in to electrical energy
Explanation:
In a wind mill the following energy conversions take place
a) Wind energy is converted into Mechanical energy (rotation of rotor blades)
b) Mechanical energy is converted into electrical energy (by using electric motor)
This electrical energy is then used for transmission through electric lines.
Answer:
Bending stress at point 3.96 is \sigma_b = 1.37 psi
Explanation:
Given data:
Bending Moment M is 4.176 ft-lb = 50.12 in- lb
moment of inertia I = 144 inc^4
y = 3.96 in

putting all value to get bending stress

Bending stress at point 3.96 is
= 1.37 psi