In calculating the change in enthalpy in a certain reaction, it is important to remember that it is the sum of the enthapy of formation for the substances involved in the reaction.
<span>CaO(s)+2HCl(aq)→CaCl2(aq)+H2O(l) ΔH= –186kJ
</span>Ca(OH)2(aq) → CaO(s)+H2O(l)<span> ΔH= 65.1 kJ
</span>Ca(OH)2(aq) + 2HCl(aq) → CaCl2(aq) + 2H2O(l) ΔH= -120.9 kJ
To solve this we use the equation,
M1V1 = M2V2
where M1 is the concentration
of the stock solution, V1 is the volume of the stock solution, M2 is the
concentration of the new solution and V2 is its volume.
2 M x V1 = 0.1 M x .5 L
<span>V1 = 0.025 L or 25 mL of the
2 M KCl solution is needed</span>
If the partial pressure of CO₂ in a bottle of carbonated water decreases from 4.60 atm to 1.28 atm, the mass of CO₂ released is 0.265 g.
The partial pressure of CO₂ gas in a bottle of carbonated water is 4.60 atm at 25 ºC. We can calculate the concentration of CO₂ using Henry's law.

We can calculate the mass of CO₂ in 1.1 L considering its molar mass is 44.01 g/mol.

Now, we will repeat the same procedure for a partial pressure of 1.28 atm.


The mass of CO₂ released will be equal to the difference in the masses at the different pressures.

If the partial pressure of CO₂ in a bottle of carbonated water decreases from 4.60 atm to 1.28 atm, the mass of CO₂ released is 0.265 g.
Learn more: brainly.com/question/18987224
<em>The partial pressure of CO₂ gas in a bottle of carbonated water is 4.60 atm at 25 ºC. How much CO₂ gas (in g) will be released from 1.1 L of the carbonated water when the partial pressure of CO2 is lowered to 1.28 atm? At 25 ºC, the Henry’s law constant for CO₂ dissolved in water is 1.65 x 10⁻³ M/atm, and the density of water is 1.0 g/cm³.</em>
Answer:
Gravity is very important for us,animals and plants. We could not survive Earth without it. The sun's gravity keeps Earth in orbit around it, keeping us a good distance away from it (the sun). Gravity is holding down our atmosphere and the air we need to breathe along with it.
.......,ok first,WHAT THE WORLD THIS THAT!? And this may be how bread formed