8.8 × 10-5 M is the [H3O+] concentration in 0.265 M HClO solution.
Explanation:
HClO is a weak acid and does not completely dissociate in water as ions.
the equation of dissociation can be written and ice table to be formed.
HClO +H2O ⇒ ClO- + H3O+
I 0.265 0 0
C -x +x +x
E 0.265-x +x +x
Now applying the equation of Ka, where Ka is given as 2.9 × 10-8.
Ka =
2.9 × 10^-8 =
= 7.698 x
x = 8.8 × 10-5 M
The hydronium ion concentration is 8.8 × 10-5 M in 0.265 M solution of HClO.
Answer : The mass of solute in solution is .
Solution : Given,
Molarity = 0.730 M
Volume of solution = 1.421 L
Molar mass of sodium carbonate = 105.98 g/mole
Formula used for Molarity :
where,
w = mass of solute
M = Molar mass of solute
V = volume of solution in liter
Sodium carbonate is solute and water is solvent.
Now put the given values in above formula, we get the mass of solute in solution.
By rearranging the terms, we get
Therefore, the mass of solute in solution is .
A mole of any gas occupied 22.4 L at STP. So, the number of moles of nitrogen gas at STP in 846 L would be 846/22.4 = 37.8 moles of nitrogen gas.
Alternatively, you can go the long route and use the ideal gas law to solve for the number of moles of nitrogen given STP conditions (273 K and 1.00 atm). From PV = nRT, we can get n = PV/RT. Plugging in our values, and using 0.08206 L•atm/K•mol as our gas constant, R, we get n = (1.00)(846)/(0.08206)(273) = 37.8 moles, which confirms our answer.
Answer:
"1.
buoyant or suspended in water or air.
2.not settled in a definite place; fluctuating or variable."
Explanation:
Hope this helps! :)
Answer ; The question is missing in some details, but here are he details ;
The two naturally occurring isotopes of bromine are
81Br (80.916 amu, 49.31%) and
79Br (78.918 amu, 50.69%).
The two naturally occurring isotopes of chlorine are
37Cl (36.966 amu, 24.23%) and
35Cl (34.969 amu, 75.77%).
Bromine and chlorine combine to form bromine monochloride, BrCl.
Explanation:
The detaile calculation is as shown in the attachment.