It will be cloudy and there will be rain.
Hope this helps
Kinetic energy, KE, is modeled by the formula

, where m is the mass in kg and v is the velocity in m/s.
In this scenario, mass and one-half are constant but the velocity changes.
You can see that by squaring twice the velocity, that is equal to four times the original KE. Therefore, the answer is 4k.
Answer:
Explanation:
According to first law of thermodynamics:
∆U= q + w
= 10kj+(-70kJ)
-60kJ
, w = + 70 kJ
(work done on the system is positive)
q = -10kJ ( heat is given out, so negative)
∆U = -10 + (+70) = +60 kJ
Thus, the internal energy of the system decreases by 60 kJ.
Answer: d. 5 m/s^2
Explanation:
Acceleration is the change in velocity in a given time.
a = (30-20)/2 = 5
The runner has initial velocity vector

and acceleration vector

so that her velocity at time
is

She runs directly east when the vertical component of
is 0:

It's not clear what you're supposed to find at this particular time... possibly her position vector? In that case, assuming she starts at the origin, her position at time
would be

so that after 10.4 s, her position would be

which is 19.9 m away from her starting position.