Answer: The coefficient of static friction is 3.85 and The coefficient of kinetic friction is 2.8
Explanation:
in the attachment
Answer:
0.191 s
Explanation:
The distance from the center of the cube to the upper corner is r = d/√2.
When the cube is rotated an angle θ, the spring is stretched a distance of r sin θ. The new vertical distance from the center to the corner is r cos θ.
Sum of the torques:
∑τ = Iα
Fr cos θ = Iα
(k r sin θ) r cos θ = Iα
kr² sin θ cos θ = Iα
k (d²/2) sin θ cos θ = Iα
For a cube rotating about its center, I = ⅙ md².
k (d²/2) sin θ cos θ = ⅙ md² α
3k sin θ cos θ = mα
3/2 k sin(2θ) = mα
For small values of θ, sin θ ≈ θ.
3/2 k (2θ) = mα
α = (3k/m) θ
d²θ/dt² = (3k/m) θ
For this differential equation, the coefficient is the square of the angular frequency, ω².
ω² = 3k/m
ω = √(3k/m)
The period is:
T = 2π / ω
T = 2π √(m/(3k))
Given m = 2.50 kg and k = 900 N/m:
T = 2π √(2.50 kg / (3 × 900 N/m))
T = 0.191 s
The period is 0.191 seconds.
Water gets to the leaves in the tops of the tallest trees by something called the cohesion-tension theory. Water has two very unique properties called adhesion and cohesion. Cohesion is the tendency of water molecules to stick together with one another. The water sticks together, leaving no room for air, strengthening the "force" of the water going up the tree. The water also sticks to the sides of the xylem inside the tree. In addition to these properties, there are also the factors of negative and positive water potential. For more information, look up more details of the cohesion-tension theory.
Therefore, the kinetic energy of an object is proportional to the square of its velocity (speed). In other words, If there is a twofold increase in speed, the kinetic energy will increase by a factor of four. If there is a threefold increase in speed, the kinetic energy will increase by a factor of nine.