Both believe that an atom contains negative charges and positive charges.
But both were different in the placement of charges
Answer:
1)chest
2)deltoid
3)bicep
4)abs
5)quadriceps
6)lats
7)triceps
8)glutes
9)calves
10)hamstring
11)trapezuis
Explanation:
the explanation is the picture
good luck :)
hopefully, this helps
have a nice day !!
Answer:
The positively charged ball moves between both charged plates till the plates and the ball all become neutral.
Check Explanation for more.
Explanation:
Let the ball be in square brackets, and the plates in normal brackets.
(+) [+] (-)
From the law that like charges repel and unlike charges attract.
The positive ball would go first to the negatively charged plate. After which, the ball would hold more negative charges overall than before.
Because the ball is now more negatively charged, it then travels towards the positive plate. In the same manner, the ball would transfer negative electrons to the positive plate.
So, when leaving the positive plate, the ball would be more positive and be drawn towards the negative plate once more. In doing so, it would make the negative plate more positive.
Then, the ball again holds more negative electrons and is drawn towards the positive plate once more.
This back and forth process continues until the once-positive and once-negative plates become neutral, that is, they are discharged.
The ball hanging on the insulated thread becomes neutral too at this point.
Hope this Helps!!!
120n
since the speed is doubled, her force is doubled
Answer:
B. It is directly proportional to the source charge.
Explanation:
Gauss's law states that the total (net) flux of an electric field at points on a closed surface is directly proportional to the electric charge enclosed by that surface.
This ultimately implies that, Gauss's law relates the electric field at points on a closed surface to the net charge enclosed by that surface.
This electromagnetism law was formulated in 1835 by famous scientists known as Carl Friedrich Gauss.
Mathematically, Gauss's law is given by this formula;
ϕ = (Q/ϵ0)
Where;
ϕ is the electric flux.
Q represents the total charge in an enclosed surface.
ε0 is the electric constant.
Hence, the statement which is true of the electric field at a distance from the source charge is that it is directly proportional to the source charge.