The specific gravity or relative density of a substance is the ratio of its density to the density of a reference material. The relative density of the concentrated salt solution is 1.044.
Mathematically;
Density of the concentrated salt = mass of salt/volume of salt = 5.222 g/5.000 mL = 1.044 g/mL
In the case of specific gravity, the reference material is always water and water has a density of 1 g/mL.
Hence, specific gravity of the concentrated salt solution =
Density of concentrated salt solution/density of equal volume of water
= 1.044 g/mL/1 g/mL
= 1.044
Note that specific gravity is dimensionless.
Learn more: brainly.com/question/9638888
By considering the reaction equation is:
5Br(aq)+BrO3(aq)+6H(aq)= 3Br2(aq)+3H2O(l)
when the average rate of consumption of Br = 1.86x10^-4 m/s
So from the reaction equation
5Br → 3Br2 when we measure the average rate of formation (X) during the same interval So,
∴ 1.86x10^-4/5 = X / 3
∴X = 1.1 x 10^-4 m/s
∴the average rate of formation of Br2 = 1.1x10^-4 m/s
Answer:
B) Iron (c=0.45 J/g°C)
Explanation:
Given that:-
Heat gain by water = Heat lost by metal
Thus,
Where, negative sign signifies heat loss
Or,
For water:
Mass = 120 g
Initial temperature = 21.8 °C
Final temperature = 24.5 °C
Specific heat of water = 4.184 J/g°C
For metal:
Mass = 40.2 g
Initial temperature = 99.3 °C
Final temperature = 24.5 °C
Specific heat of metal = ?
So,



<u>This value corresponds to iron. Thus answer is B.</u>