Answer:
8.85m/s
Explanation:
The potential energy the watermelon held before dropping is Ep=mgh=2*9.8*4=78.4J.
When it strikes the ground, all of its Ep will transfer into Ek, so 1/2*m*v^2=78.4.
We already knew that m=2, so insert that in, we will get the V^2=78.4 m/s, V=8.85 m/s
Fulcrum need to be positioned balanced with weight on both the sides following law of lever.
What is the physical law of the lever?
- It is the foundation for issues with weight and balance. According to this rule, a lever is balanced when the weight multiplied by the arm on one side of the fulcrum, which serves as the pivot point for the device, equals the weight multiplied by the arm on the opposing side.
- The lever is balanced, in other words, when the sum of the moments about the fulcrum is zero.
- The situation in which the positive moments (those attempting to turn the lever clockwise) equal the negative moments is known as this (those that try to rotate it counterclockwise).
- Moving the weights closer to or away from the fulcrum, as well as raising or lowering the weights, can alter the balance point, or CG, of the lever.
Learn more about the Fulcrum with the help of the given link:
brainly.com/question/16422662
#SPJ4
Answer:
The electric flux is 
Explanation:
Given:
- Radius of the disc R=0.50 m
- Angle made by disk with the horizontal

- Magnitude of the electric Field

The flux of the Electric Field E due to the are dA in space can be found out by using Gauss Law which is as follows

where
is the total Electric Flux- E is the Electric Field
- dA is the Area through which the electric flux is to be calculated.
Now according to question we have

Hence the electric flux is calculated.
Answer:
little/no
Explanation:
Conductors are materials, which conduct electricity and/or heat. That means, that their resistance to such energy is so little, that an electric current is able to pass through.
It’s true, because it also depends on things like mass. Higher temperature but less mass< Lower temperature but more mass.