Answer:
v1 = 15.90 m/s
v2 = 8.46 m/s
mechanical energy before collision = 32.4 J
mechanical energy after collision = 32.433 J
Explanation:
given data
mass m = 0.2 kg
speed = 18 m/s
angle = 28°
to find out
final velocity and mechanical energy both before and after the collision
solution
we know that conservation of momentum remain same so in x direction
mv = mv1 cosθ + mv2cosθ
put here value
0.2(18) = 0.2 v1 cos(28) + 0.2 v2 cos(90-28)
3.6 = 0.1765 V1 + 0.09389 v2 ................1
and
in y axis
mv = mv1 sinθ - mv2sinθ
0 = 0.2 v1 sin28 - 0.2 v2 sin(90-28)
0 = 0.09389 v1 - 0.1768 v2 .......................2
from equation 1 and 2
v1 = 15.90 m/s
v2 = 8.46 m/s
so
mechanical energy before collision = 1/2 mv1² + 1/2 mv2²
mechanical energy before collision = 1/2 (0.2)(18)² + 0
mechanical energy before collision = 32.4 J
and
mechanical energy after collision = 1/2 (0.2)(15.90)² + 1/2 (0.2)(8.46)²
mechanical energy after collision = 32.433 J
Answer:
The inertial force of the body
Explanation:
Everybody that is moving in a curved path has an inertial force called centrifugal force.
The counterforce of the centrifugal force is called the centripetal force. It also acts on every rotating body.
This force is always directed towards the center of the origin of the curve.
The velocity of the object changes its direction and magnitude at any instant of time. But the speed and angular velocity of the object remains the same for uniform circular motion.
So, according to the Newtonian mechanics, it is the inertial force of the body responsible for the centripetal force.
B would be the correct answer
The net force is 12 N to the left.
Answer:
The current decreases.
Explanation:
Current and resistance are inversely proportional. The equation connecting current, resistance and voltage is
, where V is voltage, I is current and R is resistance.
Rearranging this equation, you get:
and

If the value of voltage in both equations remains constant, and the value of R decreases, the value of I will increase. Conversely, if in the second equation
, the value of V remains constant the value of I decreases, then the value of R, resistance will increase.
Thus, it can be seen that the current will decrease as resistance increases and vice versa.