Mike Hawk Moe Lester Hugh Janice
Answer:
≈ 6.68 m/s
Explanation:
A suitable formula is ...
vf^2 -vi^2 = 2ad
where vi and vf are the initial and final velocities, a is the acceleration, and d is the distance covered.
We note that if the initial launch direction is upward, the velocity of the ball when it comes back to its initial position is the same speed, but in the downward direction. Hence the problem is no different than if the ball were initially launched downward.
Then ...
vf = √(2ad +vi^2) = √(2·9.8 m/s^2·1.0 m+(5 m/s)^2) = √44.6 m/s
vf ≈ 6.68 m/s
The ball hits the ground with a speed of about 6.68 meters per second.
__
We assume the launch direction is either up or down.
Answer:
T₂ = 123.9 N, θ = 66.2º
Explanation:
To solve this exercise we use the law of equilibrium, since the diaphragm does not appear, let's use the adjoint to see the forces in the system.
The tension T1 = 100 N, we create a reference frame centered on the pole
X axis
T₁ₓ -
= 0
T_{2x}= T₁ₓ
Y axis y
T_{1y} + T_{2y} - 200N = 0
T_{2y} = 200 -T_{1y}
let's use trigonometry to find the component of the stresses
sin 60 = T_{1y} / T₁
cos 60 = t₁ₓ / T₁
T_{1y} = T₁ sin 60
T1x = T₁ cos 60
T_{1y}y = 100 sin 60 = 86.6 N
T₁ₓ = 100 cos 60 = 50 N
for voltage 2 it is done in the same way
T_{2y} = T₂ sin θ
T₂ₓ = T₂ cos θ
we substitute
T₂ sin θ= 200 - 86.6 = 113.4
T₂ cos θ = 50 (1)
to solve the system we divide the two equations
tan θ = 113.4 / 50
θ = tan⁻¹ 2,268
θ = 66.2º
we caption in equation 1
T₂ cos 66.2 = 50
T₂ = 50 / cos 66.2
T₂ = 123.9 N
Answer:
I think B
Explanation:
Russia is the largest country on the planet, and due to the immense size it could experience more temperature differences.