Answer: 17.78g
Explanation:
Assume there is no heat exchange with the environment, then the amount of heat taken by the steel rod, Q(s), is equal to the amount of heat lost by the water, Q(w), but with opposite sign.
Q(s) = -Q(w)
Remember, Q = mc(ΔΦ)
Where Q = amount of heat
m = mass of steel
c = specific heat capacity of steel
ΔΦ = Initial temperature T1 - Final temperature T2
Q = mc(T1-T2)
Recall, Q(s) = -Q(w). Then,
m(s)*c(s)*(T1s - T2s) = - m(w)*c(w)*(T1w - T2w)
Substituting each values
Note: m(w) = volume of water*density = 75mL*1g/mL = 75g
m(s)*0.452*(21.5-2) = -75*4.18*(21.5-22)
m(s)*8.814 = 156.75
m(s) = 156.75/8.814
m(s) = 17.78g
Therefore, the mass of steel is 17.78g
Answer:
The order is: electron, carbon, water, glucose, glycogen.
Explanation:
The electron is a negatively charged subatomic particle and is therefore the smallest.
Carbon is a chemical element, which belongs to the group-14 of periodic table and has atomic number 6.
Water is a odorless, almost colorless and tasteless chemical compound which is necessary for all the known living form. The chemical formula is H2O and it is composed of 2 hydrogen atoms and one oxygen atom.
Glucose is a monosaccharide sugar and a type of simple carbohydrate. The chemical formula is C6H12O6 and is composed of 6 carbon atoms, 6 oxygen atoms and 12 hydrogen atoms.
Glycogen is a branched polysaccharide molecule, which is composed of multiple monomeric glucose units. Therefore, it is the largest.
<u>Therefore, the increasing order is: electron, carbon, water, glucose, glycogen.</u>
Answer:
False.
Explanation:
Snow forms when tiny ice crystals in clouds stick together to make snowflakes.
Answer:
A D F
Explanation:
Its right but its not in order But its A D and F
Answer: hello your question is incomplete below is the complete question
Salt water contains n sodium ions (Na+) per cubic meter and n chloride ions (Cl−) per cubic meter. A battery is connected to metal rods that dip into a narrow pipe full of salt water. The cross sectional area of the pipe is A. The magnitude of the drift velocity of the sodium ions is VNa and the magnitude of the drift velocity of the chloride ions is VCl.
What is the magnitude of the ammeter reading ?
answer :
| I | = neAVₙₐ + neAV (Cl-)
Explanation:
Given that there are N sodium ions
<u>Determine the Magnitude of the ammeter reading </u>
| I | = current due to sodium ions + current due to (Cl-) ions
= neAVₙₐ + neAV (Cl-)